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ABSTRACT

FLUORESCENCE IN SITU HYBRIDIZATION ANALYSIS OF 
HUMAN EMBRYOS DERIVED FROM 

IN VITRO AND IN VIVO MATURED OOCYTES

Constance DeScisciolo 
Old Dominion University 

Eastern Virginia Medical School 
August 1997 

Director: Dr. Susan Lanzendorf

Despite adequate hormonal stimulation, oocytes collected for the 

purpose of in vitro fertilization and embryo transfer display several levels of 

nuclear maturity. Preovulatory or mature oocytes, technically those that are 

Metaphase I or II, are inseminated shortly after aspiration and assessed for 

fertilization the following day. Prophase I oocytes, also called germinal vesicle- 

bearing or immature oocytes, require a 24-36 hour period in culture before 

being exposed to spermatozoa. During this time, the majority of Prophase ! 

oocytes complete nuclear maturation in vitro, progressing from germinal vesicle 

breakdown through first polar body extrusion. If inseminated, many in vitro 

matured oocytes fertilize and appear to develop normally. However, compared 

to embryos derived from mature oocytes, embryos derived from Prophase I 

oocytes produce significantly fewer pregnancies following intrauterine transfer. 

To determine if the reduced developmental potential of embryos derived from 

Prophase I oocytes can be explained in part by an increase in nuclear and/or 

genetic abnormalities, this study used Fluorescence In Situ Hybridization 

analysis to compare 65 embryos derived from oocytes that were Metaphase I or 

II at aspiration to 61 embryos derived from oocytes that were Prophase I at 

aspiration. Although there was no difference in the incidence of multinucleated 

blastomeres in the two groups, embryos derived from Prophase I oocytes had a
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significantly higher incidence of both anuclear blastomeres and blastomeres 

with a fragmented nucleus compared to their counterparts derived from mature 

oocytes. Because nuclear fragmentation is a hallmark of programmed cell 

death and subsequent apoptosis, which has been implicated in the processes 

of follicular atresia in vivo and cleavage arrest in vitro, we speculate that 

Prophase I oocytes obtained following controlled ovarian hyperstimulation 

originate from follicles in early stages of atresia. This study found no difference 

in the rate of aneuploidy for chromosomes X, Y, and 18, or in the incidence of 

mosaicism involving these chromosomes in the two groups of embryos. 

However, according to our classification system, 23% of embryos derived from 

Metaphase I or II oocytes were normal compared to only 3% of embryos derived 

from Prophase I oocytes. Our findings suggest that few embryos derived from 

Prophase I oocytes are normal, perhaps explaining in part why they rarely 

establish pregnancies in our IVF program.
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I. INTRODUCTION

At or shortly after birth, the human ovary consists of millions of follicles, 

each containing an oocyte that has begun meiosis only to become arrested 

early in the first meiotic division at a stage referred to as the dictyate stage. The 

nucleus of the oocyte, defined as the germinal vesicle, has become arrested in 

Prophase I of meiosis, and will remain arrested throughout childhood.

Following the maturation of the hypothalamic-pituitary-ovarian axis that occurs 

at puberty, a 28-35 day reproductive cycle is established. During each cycle, 

under appropriate hormonal stimulation, a group of follicles is “recruited” to 

begin growth and development. Approximately halfway through the cycle, a 

gonadotropin (follicle stimulating hormone and luteinizing hormone, called FSH 

and LH respectively) surge occurs, inducing the resumption of meiosis in a 

single oocyte, that within the “dominant follicle". The remaining follicles, and the 

oocytes within, will have succumbed to atresia at various stages of 

development. Progression of this oocyte through germinal vesicle breakdown 

(GVBD) to first polar body extrusion follows, and ovulation ensues. The nucleus 

of the ovulated oocyte is once again arrested, this time in metaphase of the 

second meiotic division (Metaphase II), and it will remain arrested until 

fertilization occurs. This description of oogenesis and the more detailed one 

that follows, represent decades of work by many investigators as reviewed by 

Byskov (1982), Baker (1982), and Wassarman and Albertini (1994).

Reproductive endocrinologists have developed controlled ovarian 

hyperstimulation (COH) protocols which utilize the exogenous administration of 

gonadotropic hormones to increase the number of mature oocytes available for 

assisted reproductive techniques. By artificially increasing the serum level of
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FSH, the cohort of developing follicles can avoid the usual "selection” phase in 

which all but the dominant follicle undergo atresia, allowing the oocytes in all of 

the recruited follicles to achieve growth and maturation. Prior to ovulation, the 

oocytes are collected in a transvaginal, ultrasound-guided procedure, and used 

for in vitro fertilization and embryo transfer (IVF-ET). Despite adequate 

hormonal stimulation, these fully-grown oocytes demonstrate various levels of 

nuclear maturity. Preovulatory, or “mature" oocytes, technically those in 

Metaphase I or Metaphase II of meiosis, are inseminated shortly after collection 

and assessed for fertilization the following day. Prophase I oocytes, also called 

germinal vesicle bearing or “immature” oocytes, must be cultured for 24-36 

hours to permit germinal vesicle breakdown and first polar body extrusion 

before being exposed to spermatozoa. Despite the fact that the majority of such 

in vitro matured oocytes do fertilize and appear to cleave normally, the resulting 

embryos demonstrate an extremely low incidence of pregnancy following 

intrauterine transfer when compared to embryos derived from oocytes that were 

mature at collection (Reviewed by Edwards and Brody, 1995).

The reduced developmental potential of embryos derived from in vitro 

matured oocytes is well-documented but poorly understood. The purpose of this 

study was to compare the rate of aneuploidy and the incidence of mosaicism in 

embryos derived from in vitro matured oocytes to that observed in embryos 

derived from in vivo matured oocytes using Fluorescence In Situ Hybridization 

(FISH), a technique with proven application for the genetic analysis of human 

embryos.

A. Oogenesis

Oogenesis, the formation, growth, and maturation of the oocyte, begins
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early in fetal life when, under the influence of two X chromosomes, (and in the 

absence of a Y chromosome), the primitive bipotential gonads begin to 

differentiate into ovaries. Primordial germ cells, identifiable as early as 24 days 

after conception, migrate from extra-embryonic sites to a region of tissue called 

the genital ridge located on the ventral surface of the primitive kidney, the 

mesonephros. Upon arrival at the genital ridge, which will form an ovary in the 

female, the germ cells are called oogonia. As a result of vigorous mitotic 

activity, their number rapidly increases from 600,000 at eight weeks of gestation 

to nearly 7,000,000 by twenty weeks of gestation. Upon entering meiosis, a 

process which begins around 12 weeks of gestation immediately following 

sexual differentiation, the oogonia are called oocytes. During the second half 

of fetal life, the number of oocytes falls to approximately 2,000,000 at birth. This 

dramatic decline is the result of chromosomal breaks and other errors leading to 

oocyte degeneration that occur early in the first meiotic division, as described 

below.

Meiosis, a series of two cell divisions in which the number of 

chromosomes is reduced from diploid to haploid, begins before birth and is not 

truly completed until, or unless, sperm penetration occurs following ovulation, 

many years later. The first meiotic division begins shortly after the last mitotic 

division of the oogonium is completed. Following interphase, in which the DNA 

is replicated in preparation for meiosis, the primary oocyte enters Prophase I. 

This phase is exceptional for two reasons. First, it is during Prophase I that 

crossing over takes place and second, Prophase I is characterized by a 

prolonged resting phase in females during which development is arrested.

Prophase I can be divided into five stages called leptotene, zygotene, 

pachytene, diplotene, and diakinesis. Leptotene begins when, in cytological
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preparations, the diploid number of chromosomes can be identified, each 

chromosome comprised of two identical chromatids. During zygotene, 

homologous chromosomes of maternal and paternal origin associate and 

eventually attach forming pairs called “tetrads" in a manner so precise that 

homologous genes associate with one another. “Crossing over”, in which the 

exchange of genetic material between pairs of homologous chromosomes 

occurs, happens during pachytene. Diplotene is characterized by the 

separation of homologous chromosomes except at those places in which 

crossing over has occurred, termed chiasmata. Crossing over is critical in that 

this reassortment of genes ensures that the genetic material of the oocyte is 

unique.

In humans, Prophase I is completed through diplotene in all oocytes at 

or shortly after birth. The oocytes then enter a prolonged resting stage termed 

dictyate or the dictyotene stage. Although meiosis is arrested during dictyate, 

(which lasts throughout childhood until puberty, when the maturation of the 

hypothalamic-pituitary-ovarian axis occurs), dictyate is not truly a “resting 

stage”. Cytoplasmic organelles such as Golgi apparatus, endoplasmic 

reticulum, and ribosomes are present in oocytes at dictyate, and both 

transcription and translation actively occur (Telford et al., 1990; Wassarman and 

Kinloch, 1992). The “lampbrush” chromosomes present, characteristic of those 

found in the oocytes of many vertebrate and invertebrate species, bear lateral 

projections which replicate ribonucleic add (RNA). Since transcription ceases 

at the time of ovulation (Telford et al., 1990), this RNA guides protein synthesis 

in the oocyte and organizes the early development of the embryo following 

fertilization until activation of the embryonic genome occurs, believed to be 

between the 4- 8 cell stage in the human (Braude et al., 1988).
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The term “primordial follicle” is given to the oocyte at dictyate when it 

becomes surrounded by a single layer of cuboidal “theca” cells. These layers 

increase in number by mitosis, until the oocyte, in its arrested meiosis, is 

surrounded by several layers of cells called granulosa cells. These cells, along 

with the oocyte itself, participate in the formation of the zona pellucida, a 

mucoid material which ultimately surrounds the oocyte. Granulosa cell 

processes penetrate the zona pellucida, contacting the oocyte in various 

regions, permitting exchange of both substrates and waste materials.

Eventually, follicular fluid accumulates in the spaces between the granulosa 

cells, and the follicle is said to be vesicular. These spaces coalesce to form a 

single antrum, transforming the follicle into a preovulatory or Graafian follicle.

The process of follicular growth described above, resulting in the 

development of vesicular and finally Graafian follicles from that of the primordial 

type, begins shortly before birth and continues throughout childhood in a small 

fraction of the follicle pool at all times. Before the onset of puberty, all such 

growing follicles undergo degeneration at some point in their development, a 

process called follicular atresia, due to a low serum FSH level. Thus, of the 

2,000,000 oocytes present at birth, about 250,000 remain at the age of seven 

years. At the onset of puberty, approximately 150,000 are viable. Following the 

maturation of the hypothalamic-pituitary-ovarian axis that occurs at puberty, a 

28-35 day reproductive cycle is established. Only at this time, with the correct 

hormonal support (i.e. FSH), is a growing follicle allowed to proceed to the point 

of ovulation. During each cycle, although many follicles begin to grow, only one 

oocyte is induced to resume meiosis and proceed to ovulation. The remaining 

follicles undergo atresia. During a woman’s reproductive lifetime, no more than 

400 oocytes are normally ovulated.
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Shortly before ovulation, approximately 36 hours in the human female, 

there is a dramatic increase in the release of gonadotropins from the pituitary 

gland, termed the “LH surge”. This surge results in the final maturation of the 

Graafian follicle, inducing a wave of mitosis in the granulosa cells. Those cells 

immediately adjacent to the oocyte, the cumulus oophorous, become columnar 

in shape and eventually separate from the remaining membrana granulosa, 

rendering the oocyte "free-floating” within the follicle or loosely attached to the 

follicle wall.

The LH surge also induces the resumption of meiosis in the oocyte to be 

ovulated. Meiosis progresses to diakinesis, also called the germinal vesicle 

stage since the nucleus of the oocyte at this time is defined as the germinal 

vesicle. Thus, the prophase of the first meiotic division begun so long ago is 

finally completed. Metaphase I is rapidly followed by Anaphase I and then 

Telophase I. Homologous chromosomes separate, and an unequal division of 

cytoplasm occurs, resulting in a rather large secondary oocyte and a small first 

polar body. Meiosis continues to Metaphase II, which in the human female 

represents another stage of arrested development similar to dictyate. It is at this 

time that ovulation generally occurs. Completion of the second meiotic division 

is dependent upon penetration of the oocyte by a spermatozoon at fertilization, 

and an unequal division of cytoplasm occurs once again, resulting in the 

extrusion of a small second polar body.

Great strides have been made in recent years toward understanding 

gene expression during oogenesis. Maturation-promoting factor (MPF), a 

protein dimer consisting of a catalytic subunit composed of a serine threonine 

kinase, and a regulatory subunit composed of cyclin-B (Pines and Hunter,

1989), is a key regulatory component of the cell cycle in both meiotic and mitotic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

7

cells (Murray et al., 1991). During oogenesis, two peaks of MPF activity have 

been demonstrated (Mattioli et ai., 1991). The first one occurs at the resumption 

of meiosis following dictyate, and the second during meiotic arrest at 

Metaphase II. The proto-oncogene c-mos has been implicated in the up- 

regulation of MPF activity that occurs at both these times (Sagata et al., 1989). 

The protein product of c-mos is a kinase which enhances MPF activity directly 

by phosphorylating the cyclin-B subunit (Roy et al., 1990), and indirectly by 

interfering with its proteolytic degradation (O’Keefe et al., 1991). A study 

performed at the Jones Institute (Heikinheimo et al., 1995) supports the theory 

that c-mos messenger RNA is a stored maternal message that is translated in a 

temporally-specific manner during oogenesis, allowing c-mos kinase to play a 

vital role in meiotic maturation.

B. In Vitro Maturation of Qocvtes

Despite vast improvements in the success of assisted reproduction for 

the treatment of infertility, from the cryopreservation of human embryos to the 

use of intracytoplasmic sperm injection (ICSI) for the achievement of 

fertilization, there has been little success with the maturation of human oocytes 

in the laboratory. As mentioned earlier, oocytes collected following COH for the 

purpose of IVF-ET display varying levels of nuclear maturity. Preovulatory, or 

mature oocytes, those which have been induced to resume meiosis in vivo, are 

inseminated shortly after collection. These oocytes demonstrate high 

fertilization rates in vitro and, upon transfer to the uterus, the resulting embryos 

initiate significantly more pregnancies than embryos derived from oocytes that 

were Prophase I at collection.

Prophase I oocytes are cultured for 24-36 hours before being reassessed
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for maturity, it has been the Norfolk experience that by this time, the majority 

(80%) have achieved meiotic competency, progressing from germinal vesicle 

breakdown through first polar body extrusion (Veeck, 1984). Upon 

insemination with freshly prepared spermatozoa, approximately 80% of such “in 

vitro matured” oocytes fertilize and appear to undergo normal development. 

However, when the resulting embryos are transferred to the uterus, an 

extremely low incidence of pregnancy (4%) is realized (unpublished data from 

the Jones Institute data base).

Despite the fact that COH protocols producing the greatest number of 

mature oocytes are utilized, approximately 22% of the oocytes collected for the 

purpose of IVF-ET are Prophase I (unpublished data from the Jones Institute 

data base). Several investigators have modified in vitro culture conditions, 

generally believed to be suboptimal, in an attempt to improve in vitro maturation 

rates, and enhance the development and pregnancy potential of embryos 

derived from oocytes matured in vitro.

Prins and coinvestigators (1987) reported that immature oocytes cultured 

for 24-34 hours in medium supplemented with LH and FSH demonstrate higher 

maturation rates (73.5% versus 35.6%) and fertilization rates (64.0% versus 

36.4%) than control oocytes cultured under standard conditions. The authors 

were unable to determine if gonadotropin supplementation of culture medium 

increased the ability of these oocytes to initiate pregnancy, as the resulting 

embryos were transferred with embryos derived from oocytes matured in vivo.

Other attempts to improve the in vitro maturation and development of 

immature oocytes collected following COH have utilized coculture. This 

technique, which involves culturing oocytes and embryos along with various 

somatic cells such as epithelial cells and fibroblasts from numerous sites, or
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granulosa cells, is an effort to mimic the environment within the ovarian follicle.

Dandekar et al. (1991) reported that “immature oocytes" cultured with 

granulosa cells obtained from preovulatory follicles from the same patient 

demonstrated higher maturation and fertilization rates compared to “immature 

oocytes” cultured without granulosa cells (59% versus 35% and 54% versus 

20% respectively). Unfortunately, nuclear maturation was not assessed in this 

study and oocytes were classified as “immature” based solely on cumulus and 

corona morphology rather than on the presence of a germinal vesicle, in 

addition, because the embryos were transferred along with embryos derived 

from in vivo matured oocytes, the authors were unable to determine if there was 

a difference in the pregnancy potential between the two groups.

Janssenswillen and coworkers (1995) reported that human cumulus-free 

immature oocytes cultured with green monkey kidney epithelial cells (Vero 

cells) demonstrate a higher maturation rate than similar oocytes cultured in 

medium alone. Thirty hours after collection, 82% of the immature oocytes in the 

coculture group progressed to first polar body extrusion compared to 38% of 

those cultured in medium alone. Because all in vitro matured oocytes were 

used for other studies, the authors were unable to assess their fertilization and 

further development.

Using the cynomolgus monkey model, Lanzendorf and coinvestigators 

(1996) have shown that the developmental potential of embryos derived from 

immature oocytes is significantly improved following cocuiture with Vero ceils.

In this study, 40% of embryos derived from in vitro matured oocytes reached the 

expanded blastocyst stage when cultured with Vero cells compared to 0% when 

cultured in medium alone. Interestingly, embryos derived from in vivo matured 

oocytes did not benefit from coculture, reaching the expanded blastocyst stage
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at a rate of 33% in both treatment groups. The authors concluded that embryos 

derived from in vitro matured oocytes differ in culture requirements when 

compared to embryos derived from oocytes matured in vivo.

The studies described above demonstrate that it is possible to improve 

the developmental potential of Prophase I oocytes on two levels: at the level of 

the oocyte, by improving in vitro maturation and fertilization rates; and, at the 

level of the embryo, by improving development to the expanded blastocyst 

stage. However, because embryos derived from Prophase I oocytes are rarely 

transferred alone, it is unclear if these improvements translate into 

improvements in pregnancy rates.

The fact that some Prophase I oocytes undergo maturation, fertilization, 

and normal development in vitro and, upon transfer to the uterus, are capable of 

implanting and progressing to live births, is of great interest to infertility 

specialists. It suggests that, in the future, IVF-ET may be possible with little or 

no exogenous hormonal stimulation, particularly if the developmental potential 

of in vitro matured oocytes improves such that it approximates that of oocytes 

matured in vivo during COH. This is extremely important given the fact that the 

long-term effects of COH on the patient remain largely unknown. In addition to 

the possibility that there is an association between ovarian stimulation and an 

increased risk of ovarian cancer, the severe form of ovarian hyperstimulation 

syndrome, although rare, represents a critical illness (Edwards and Brody,

1995).

The developmental potential of Prophase I oocytes is also of great 

interest for another reason. Although the cryopreservation of mature human 

oocytes has met with little success, Toth and coworkers (1994) have reported 

that Prophase I human oocytes, obtained from both stimulated and unstimulated
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ovaries, are able to survive cryopreservation and undergo nuclear maturation in 

vitro following thaw. The oocytes obtained from unstimulated ovaries were not 

inseminated, but those obtained from stimulated ovaries, upon insemination, 

demonstrated fertilization and cleavage rates similar to that of control oocytes. 

Although the cryopreservation of Prophase I oocytes may be an option for 

women, particularly those anticipating loss of ovarian function following 

extirpative therapy, radiation, or chemotherapy, the low pregnancy rate realized 

after intrauterine transfer of embryos derived from these oocytes remains a 

serious concern.

Cytogenetic analyses of Metaphase II human oocytes obtained after 

ovarian hyperstimulation have been limited not only by the scarcity of material, 

but also by the inefficiency of the karyotyping procedure. These studies have 

consistently found, however, that many such oocytes are aneuploid, containing 

a chromosomal constitution different from the normal haploid constitution by 

loss or duplication of one or more chromosomes or chromosome segments.

Van Blerkom and Henry (1992) reported that 25-40% of mature oocytes 

collected after COH are aneuploid, and suggested that this may result from 

exposure to abnormal follicular conditions during a critical point in maturation. 

This is in sharp contrast to a 1-3% aneuploidy rate in Prophase I oocytes 

allowed to undergo maturation in vitro (VanBlerkom, 1989). It must be noted, 

however, that the immature oocytes in this study were obtained from 

unstimulated ovaries, and whether or not this low aneuploidy rate applies to 

immature oocytes collected following COH remains unknown. Indeed the fact 

that the follicles containing Prophase I oocytes were able to be identified and 

punctured during the retrieval, suggests at least a limited exposure and 

response to the gonadotropins used for stimulation. This suggests that the
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Prophase I oocytes collected after COH may be different from those obtained 

from unstimulated ovaries, but this remains to be seen.

Mammalian oocytes released from follicles and placed in culture 

undergo meiotic maturation spontaneously (Pincus, 1935; Edwards, 1965; 

Eppig, 1985), provided they have reached a species-specific minimum size 

(Iwamatsu, 1975; Sorensen, 1976; Lanzendorf, 1992; Durinzi, 1995). 

Investigators have shown that increased levels of intracellular cAMP maintain 

meiotic arrest in vitro (Schultz, 1983), and that a significant decrease in the 

intracellular cAMP level precedes GVBD in the oocyte, both in vitro and in vivo 

(Dekel, 1980). It has been suggested that a cAMP-dependent protein kinase 

modulates the phosphorylation/dephosphorylation of various proteins in the 

oocyte which in turn regulate meiotic maturation (Bomslaeger, 1986; Schultz, 

1983). In addition, there is evidence suggesting a role for intracellular calcium 

levels ( Bomslaeger, 1984), steroid hormones (Eppig, 1983), and gonadotropins 

(Freter, 1984), as well as oocyte maturation inhibitor (OMI), a product of 

granulosa cells (Tsafriri, 1982). It is likely the regulation of meiosis in the 

mammalian oocyte is a complex system involving many or all of the factors 

mentioned above, but a detailed regulatory pathway remains elusive.

Despite success in the cattle industry, in which oocytes are routinely 

obtained from unstimulated ovaries and used for IVF-ET (Goto, 1988; Fukui,

1989), attempts to mature human oocytes obtained from unstimulated ovaries in 

the laboratory have met with limited success. However, three pregnancies 

resulting from in vitro-matured oocytes have been reported. In the first report, 

healthy triplet girls were delivered following the in vitro maturation and 

fertilization of oocytes recovered from ovariectomy specimens and used for 

donation (Cha et al., 1991). In the other two pregnancies, immature oocytes
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were aspirated from the follicles of infertile patients without prior ovarian 

stimulation. Following in vitro maturation of the recovered oocytes, two 

pregnancies resulting in normal, live births were established (Trounson et al., 

1994; Barnes e t al., 1995). Although these reports are both encouraging and 

exciting, much research is needed before immature oocyte recovery and use for 

the establishment of pregnancy becomes routine in the treatment of human 

infertility.

It has been suggested that although oocytes matured in the laboratory 

undergo normal nuclear maturation, perhaps their cytoplasmic maturation is 

impaired. Using the cynomolgus monkey model, investigators transferred 

ooplasm, a technique they called ooplasmic transfusion, from in vivo matured 

Metaphase II oocytes into Prophase I oocytes. A delivery rate of 13% was 

realized when, following nuclear maturation, the transfused oocytes were 

returned to the fallopian tube for fertilization. The authors suggest that in vitro 

matured oocytes lack a cytoplasmic factor found in oocytes matured in vivo, 

which, if replaced, improves their developmental potential (Flood, 1990).

Despite impressive strides made in recent years, there remains 

considerable mystery surrounding the female gamete, the oocyte. 

Folliculogenesis, described briefly above, in which several follicles are 

“recruited” to begin growth and development in a given reproductive cycle, is 

poorly understood. Investigators are at a loss to explain why some follicles 

become part of this developing “cohort” while neighboring follicles, seemingly 

identical, remain unaffected. It has been suggested that when meiosis is 

“asynchronized”, as it is in humans, the first oocytes to enter meiosis during fetal 

life will be among the first recruited for further development later on, but this 

remains to be proven. In addition, scientists don’t fully understand how one
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oocyte, that within the “dominant follicle”, is selected to resume meiosis while 

those within the remaining follicles in the cohort succumb to atresia at various 

stages of their development. A working theory, however, has gained wide 

acceptance (Hodgen, 1982).

Considering the complex nature of all that mammalian oogenesis 

achieves, from bestowing genetic uniqueness on the female gamete, to 

synthesizing the macromolecules and organelles necessary for normal 

fertilization and early embryogenesis, it is not surprising that attaining the ability 

to carry out and investigate this entire process in the laboratory has proven a 

great challenge.

C. Fluorescence In Situ Hybridization For The Analysis Of Human Embrvos

Fluorescence in situ hybridization (FISH) is a very powerful tool for the 

genetic analysis of blastomeres from human embryos. Used in conjunction with 

COH and IVF for the production of numerous embryos, and embryo biopsy, for 

the removal of one or two blastomeres from cleavage stage embryos, FISH has 

successfully been used for the preimplantation diagnosis of genetic sex and 

aneupioidy in human embryos prior to transfer. In addition, several 

investigators have used FISH to detect chromosome abnormalities in cleavage- 

arrested and morphologically abnormal human embryos, as well as in excess 

and “deselected” embryos, those not transferred or cryopreserved following a 

stimulated cycle.

FISH analysis involves hybridizing fluorochrome-labelled ONA probes 

specific for regions of selected chromosomes to the fixed interphase nuclei of 

blastomeres. Fluorescence microscopy then allows direct visualization of the 

selected chromosomes, permitting numerical chromosome analysis. Because
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several probes labeled with different fluorochromes can be hybridized 

simultaneously, FISH allows assessment of ploidy as well.

The preimplantation genetic diagnosis of sex allows the selective transfer 

of female embryos following IVF in couples at risk of transmitting X-linked 

disorders. FISH is currently the preferred method for embryo sexing with clear 

advantages over the previous method, DNA amplification via the polymerase 

chain reaction (PCR), in that it provides information on sex chromosome 

number, and is less susceptible to contamination by foreign ONA (Grifo et 

al.,1994; Griffin et al.,1994; Harper et al.,1994).

Following evaluation of 20 cleavage-arrested or abnormally developing 

monospermic embryos using FISH with ONA probes specific for chromosomes 

X,Y,18,13, and 21, Munne and coworkers (1993) reported that 70% contained 

numerical aberrations of these chromosomes, including errors in ploidy, 

mosaicism (the presence of two or more different cell lines within a single 

embryo), and aneupioidy. Similar evaluation of 10 normally developing 

monospermic embryos from patients with a mean age of 40 years found that 

70% of these embryos were abnormal as well, with sex chromosome 

aneupioidy being the most common abnormality.

A similar study evaluating 131 cleavage-arrested or morphologically 

abnormal embryos using FISH with DNA probes specific for chromosomes X, Y, 

and 18 found numerical aberrations in 56.5% of the embryos (Munne et 

al.,1994). In this study, most of the abnormal embryos were polyploid or 

mosaic. The authors suggest that, if it were possible to evaluate all 

chromosomes simultaneously, the vast majority of cleavage-arrested and 

abnormally developing embryos would likely be found to carry numerical 

chromosome abnormalities.
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In April 1995, Munne and coworkers published a study using FISH to 

evaluate 31 normally-developing human embryos, those that had reached the 

6-8 cell stage by Day 3 of development with <15% fragmentation, even cells, 

and few or no vacuoles or multinucleated blastomeres. These embryos came 

from two sources: embryos determined to be male following preimplantation 

diagnosis of sex in couples at risk of transmitting X-linked disorders, and 

therefore desiring the selective transfer of female embryos; and, embryos 

donated for research by patients over 40 years of age, since cryopreservation 

rarely increases the chance of pregnancy in these patients. Using probes 

specific for chromosomes X.Y.18, and 16, the investigators determined that 23% 

of normally-developing embryos carried numerical abnormalities involving 

these chromosomes. And, if diploid embryos containing one or more tetraploid 

cells are considered abnormal, then this percentage increased to 49%.

Although the aneupioidy rate tended to increase with maternal age, the 

differences did not reach statistical significance possibly due to a small sample 

size.

In a larger study evaluating 524 monospermic embryos with FISH using 

either three (X,Y, and 18) or five (X,Y,18,13, and 21) DNA probes 

simultaneously, Munne and coinvestigators (1995) correlated embryo 

morphology, developmental rate, and maternal age with numerical 

chromosome abnormalities. They reported that while polyploidy and 

multinucleation are the main chromosome abnormalities found in cleavage- 

arrested embryos, aneupioidy is the main chromosome abnormality in normally- 

developing embryos obtained after COH/IVF. In addition, the incidence of 

aneupioidy increases significantly with maternal age, reaching 37.2% in 

normally-developing embryos from patients 40 years or older.
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The application of FISH for the genetic analysis of human embryos in 

recent years has had a large impact on the field of assisted reproduction. We 

have learned that a large proportion of embryos obtained following COH/IVF 

are genetically abnormal, including many with normal morphology, perhaps 

explaining in part, why so few embryos implant and progress to live births upon 

transfer to the uterus. Also, the occurrence of genetic abnormalities in human 

embryos increases significantly with maternal age, a fact of great importance 

considering that the average age of patients seeking treatment for infertility has 

increased over the past several years. In addition, the application of FISH in the 

area of preimplantation genetic diagnosis has led to the exciting possibility that, 

in the future, routine screening of human embryos after COH/IVF will allow the 

selective transfer of fewer, genetically normal embryos in all patients, thereby 

increasing the efficiency of IVF/ET while, at the same time, decreasing the 

incidence of multiple births. This possibility will soon be explored at The Jones 

Institute for Reproductive Medicine.
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II. STATEMENT OF PURPOSE

Despite adequate hormonal stimulation, oocytes collected following 

controlled ovarian hyperstimulation for the purpose of IVF-ET display several 

levels of nuclear maturity. Mature (Metaphase I or II) oocytes are inseminated 

shortly after retrieval and assessed for fertilization the following day. Prophase I 

(immature) oocytes are cultured for 24-36 hours before being exposed to 

spermatozoa. Of those that complete nuclear maturation in vitro during this 

time, progressing from germinal vesicle breakdown through first polar body 

extrusion, approximately 50% fertilize and appear to undergo normal 

development. However, an extremely low incidence of pregnancy is realized 

following intrauterine transfer of the resulting embryos. From January of 1986 

through March of 1997, there were 4098 embryo transfers performed at the 

Jones Institute in which all embryos were derived from mature oocytes. Of 

these, 1177 (29%) resulted in clinical pregnancies. In contrast, of 96 embryo 

transfers performed during the same time period in which all of the embryos 

were derived from Prophase I oocytes, only 4 (4%) resulted in clinical 

pregnancies (unpublished data, Jones Institute database).

The reduced developmental potential of embryos derived from Prophase 

I oocytes is well documented and, as a result, ovarian hyperstimulation 

protocols producing the greatest number of mature oocytes are utilized in IVF 

programs. Embryos derived from Prophase I oocytes are transferred only when 

a sufficient number of embryos derived from mature oocytes is unavailable. In 

many cases, Prophase I oocytes are discarded or used in research protocols. 

Given the fact that last year, 22% of all oocytes aspirated at the Jones Institute 

were Prophase I (unpublished data, Jones Institute database), it is obvious that
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in order improve the success rate and increase the efficiency of IVF-ET for our 

patients, we need to improve the developmental potential of Prophase I 

oocytes. Increasing our understanding of their reduced developmental 

potential, the goal of this study, is a first step toward this end.

The purpose of this study was to test our hypothesis that the reduced 

developmental potential of embryos derived from Prophase I oocytes can be 

explained in part by an increase in nuclear and/or genetic abnormalities in 

these embryos. We used Fluorescence In Situ Hybridization analysis with DNA 

probes specific for chromosomes X, Y, and 18 to compare the rate of 

aneupioidy and the incidence of mosaicism in embryos derived from oocytes 

that were Prophase I at aspiration to that observed in their counterparts derived 

from oocytes that were Metaphase I or II at aspiration.
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III. EXPERIMENTAL TECHNIQUES

A. Materials

The hormones, human menopausal gonadotropin (Pergonal) and human 

follicle stimulating hormone (Metrodin) used for ovarian hyperstimulation of 

patients at The Jones Institute for Reproductive Medicine were obtained from 

Serono Laboratories, Inc. (Norwell, MA). Leuprolide acetate (Lupron) was 

obtained from TAP Pharmaceuticals (Deerfield, IL). Falcon plasticware was 

used for tissue culture and sperm preparation (Becton Dickinson, Franklin 

Lakes, NJ). Hams F-10 culture medium and Dulbecco's phosphate buffered 

saline were supplied by GIBCO Laboratories (Grand island, NY). Human serum 

albumin and synthetic serum substitute were obtained from Irvine Scientific 

(Santa Ana, CA). Percoll, sodium citrate, bovine serum albumin, methanol, and 

glacial acetic acid were purchased from Sigma Chemical Company (St. Louis, 

MO). The following materials, used in the preparation of Acid Tyrodes solution, 

were also obtained from Sigma Chemical Company: sodium chloride, 

potassium chloride, calcium chloride, magnesium chloride, glucose, and 

polyvinylpyrrolidone (PVP-40). Propanediol was supplied by Fisher Scientific 

(Pittsburgh, PA). Formamide was obtained from United States Biochemical 

(Cleveland, OH). The DNA probe mixtures, saline sodium citrate (SSC), NP-40, 

and DAPI (4’,6-diamino-2-phenyl-indole) were purchased from Vysis (Downers 

Grove, IL).

B. Equipment

Oocytes and embryos were evaluated using a Nikon Diaphot inverted 

microscope (Nikon, Garden City, NY) equipped with Hoffman optics (Hoffman
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Modulation Contrast, Greenvale, NY). Embryos were cryopreserved and later 

thawed in a Planer Kryo 10, Series II programmable biological freezer obtained 

from T.S. Scientific (Perkasie, PA). Blastomere isolation and fixation was 

performed under a Nikon SMZ-10 dissecting microscope. Rxed nuclei were 

located using a Nikon Labophot-2 phase contrast microscope, and their 

locations recorded with a Reid Rnder microscope slide obtained from Rsher 

Scientific. Fluorescence microscopy was performed on a Nikon Microphot-FX 

epifluorescent microscope, and the single bandpass filter sets for viewing both 

green and red fluorochromes were supplied by Nikon. The single bandpass 

aqua filter set and the triple bandpass filter set were obtained from Vysis.

C. Human Embryos

Embryos for this study were obtained from two sources. The first source 

was cryopreserved embryos donated by IVF patients of the Jones Institute for 

Reproductive Medicine. Patients no longer wishing to keep their embryos 

cryopreserved are sent a form entitled “Authorization for Utilization or 

Disposition of Cryopreserved Pre-zygote(s)/Preembryo(s) at the Jones Institute" 

(Appendix B). One option they may choose is to donate their embryos for use in 

approved research. The use of such embryos for this study is covered by a 

protocol reviewed and approved by the Institutional Review Board of Eastern 

Virginia Medical School (IRB Approval #07-08-93-0043; Appendix A1).

A second source of embryos was obtained as follows: Prophase I 

oocytes were donated by non-male-factor IVF patients and oocyte donors at 

The Jones Institute for Reproductive Medicine. After overnight incubation in 

culture medium, the oocytes were inseminated with sperm samples obtained 

from the spouse in the case of IVF patients, or from consenting sperm donors in
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the case of oocyte donors. The use of these embryos is covered by the protocol 

mentioned above (IRB Approval #07-08-93-0043; Appendix A1). The consent 

forms for oocyte and sperm donors are found in Appendices A2 and A3.

D. Methods

1. In Vitro Fertilization and Embrvo Culture

Because this study utilized human embryos donated for research by 

former IVF patients which were in cryostorage for varying numbers of years, 

laboratory protocols differed. In addition, procedures such as stimulation 

protocol, sperm preparation, and oocyte insemination are routinely 

individualized and tend to vary slightly according to each patient’s specific 

needs.

Ovarian hyperstimulation was accomplished as previously described for 

the Norfolk program (Muasher.1992). Briefly, hMG (Pergonal) alone, FSH 

(Metrodin) alone, or a combination of hMG/FSH with or without pituitary 

suppression using a GnRH analog (Lupron) under long or short protocols were 

utilized. Transvaginal oocyte retrieval was performed 34-36 hours after human 

chorionic gonadotropin (hCG) administration.

Culture conditions for oocytes and embryos, as well as in vitro fertilization 

procedures, were as previously described for the Norfolk program 

(Veeck,1991). Culture of oocyte and embryos occurred in organ culture dishes 

kept at 5% C02 in air under humidified conditions. Incubation medium 

consisted of modified Ham’s F-10 supplemented with human fetal cord serum, 

human serum albumin, or synthetic serum substitute. Sperm was prepared by 

either standard swim-up methods or after Percoll gradient centrifugation. 

Insemination concentration was dependent upon sperm morphology. Oocytes
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were classified according to nuclear maturity at aspiration, and inseminated as 

follows: Metaphase II oocytes, 3-5 hours after aspiration; Metaphase I oocytes, 

3-5 hours after first polar body extrusion; Prophase I oocytes, 24-29 hours after 

aspiration. Oocytes were evaluated for the presence of pronudei 12 to 19 

hours after insemination.

Immediately before transfer, which occurred on the morning of Day 2 or 3 

following fertilization, embryos were evaluated for cleavage status and their 

morphology graded using criteria previously published (Veeck, 1991). Grade 1 

represented a perfect morphological condition and Grade 5 an embryo with 

severe or complete fragmentation. The grade of the embryo with the best 

morphology was recorded as the grade of the transfer.

2. Crvopreservation and Thawing Protocols

Cryopreservation of pronuclear stage embryos was performed before 20 

hours post-insemination using a slow freezing protocol in a programmable 

Planer Kryo 10, Series II biological freezer as previously described (Veeck et 

al., 1993). Freezing medium consisted of 1.5 M propanediol in modified 

Dulbecco’s phosphate buffered saline. Embryos were placed into cryovials 

containing 0.3 mL of freezing medium, and allowed to equilibrate at room 

temperature for 30 minutes before being loaded into the freezer. The 

temperature within the freezer was cooled to -6QC at a rate of 10 C/ minute.

After a 5 minute hold, each cryovial was manually seeded. Following an 

additional 5 minute hold, the temperature within the freezer was cooled to 

-800 c  at a rate of 0.50 Cl minute. Each cryovial was then plunged directly into 

liquid nitrogen for storage.

The thawing procedure was performed in the Planer biological freezer in 

a similar manner. After cooling the freezer to -1000 C, the cryovials containing
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the embryos to be thawed were loaded. The temperature within the freezer was 

warmed to room temperature at a rate of 80 C/ minute. After a 5 minute hold, 

the embryos were removed from the cryovials, and taken through a series of 

decreasing concentrations of 1,2 propanediol for 5 minutes in each dilution (1.0 

M, 0.5 M, and dPBS without propanediol). The embryos were washed and 

placed in equilibrated culture medium.

3. Blastomere Isolation and Fixation

Following evidence of normal fertilization (i.e. the presence of two 

pronuclei 12-20 hours post-insemination), or, in the case of cryopreserved 

embryos, survival of the thawing procedure, embryos were cultured in Hams F- 

10 medium supplemented with 15% Synthetic Serum Substitute for 48 hours. 

Each embryo was placed briefly (2-3 seconds) in acidified Tyrodes solution 

(Hogan et. al., 1986) to effect zona pellucida removal, and then washed and 

transferred to a culture dish containing calcium and magnesium-free 

Dulbecco’s phosphate buffered saline for 10-15 minutes to decrease cell-to-celi 

contacts. Blastomere separation was facilitated by gentle pipeting through a 

fine-drawn glass pipet. Individual blastomeres were placed in a hypotonic 

solution consisting of 1% sodium citrate and 6 mg/ml bovine serum albumin for 

5 minutes, during which time they were evaluated for nuclear status under an 

inverted microscope. Figure 1 shows a representative blastomere with a single 

nucleus (A), one with multiple nuclei (B), and one found to be anuclear (C). 

Although the nuclear status before fixation was recorded, this was sometimes 

found to be incorrect, especially in cases where the cytoplasm demonstrated 

excessive granularity. For this reason, all blastomeres were fixed, even if a 

nucleus could not be identified under the inverted microscope. The absence of 

a nucleus in blastomeres was not a failure of the fixation procedure, since
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Fig. 1 Individual blastomeres from human embryos 
examined under the inverted microscope with Hoffman 
modulation contrast. (A) Blastomere with a single nucleus; 
(B) Multinucleated blastomere with 2 nuclei; (C) Anuclear 
blastomere. Original magnification x 400.
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cytoplasm was present and could be readily identified on the slide. Also, some 

blastomeres lacked a distinct, membrane-bound nucleus but a clear, lightened 

area was present within the cytoplasm. Some of these blastomeres were found 

to contain metaphase chromosomes (Figure 2B).

Following the 5-minute incubation in hypotonic solution, individual 

blastomeres were transferred to a glass microscope slide. All slides were 

previously cleaned with methanol and marked with a small circle on the bottom 

using a diamond tip pen indicating the approximate location of the nucleus. 

Immediately before the microdroplet dried, 8.5 uL of fixative (methanol/acetic 

acid 3:1) was dropped on top of the blastomere, lysing the cell membrane and 

fixing the nucleus. The fixative was prepared fresh and stored on ice during the 

procedure. Gentle blowing across the slide was used to free the nucleus of 

remaining cytoplasm. The fixed nucleus was immediately located using a 

phase contrast microscope. Rgure 2 shows a single nucleus (A), two nuclei (B), 

and a metaphase spread (C) viewed under the phase contrast microscope. 

These were obtained following the fixation of three individual blastomeres. The 

first was a mononuclear blastomere (A); the second was a multinucleated 

blastomere with 2 nuclei (B); and the third was a blastomere in which a distinct, 

membrane-bound nucleus was not visible under the inverted microscope. The 

location of the nucleus (or nuclei) was recorded with a Reid Finder microscope 

slide. All slides were stored at 8° C until the FISH procedure was performed.

4. Fluorescence In Situ Hybridization

FISH was performed using a mixture of DNA probes specific for 

chromosomes X,Y, and 18 directly labeled with Spectrum Green, Spectrum 

Orange and Spectrum Aqua fluorochromes respectively. The hybridization 

target for chromosome X was DXZ1. The hybridization target for chromosome Y
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Fig. 2 Photographs taken with a phase contrast 
microscope following the fixation of three individual 
blastomeres. (A) A single nucleus from a mononucleated 
blastomere; (B) Nuclei from a multinucleated blastomere 
with two nuclei; (C) Metaphase chromosomes obtained 
from the fixation of a blastomere in which a distinct, 
membrane-bound nucleus was not visible under the 
inverted microscope. Original magnification x 600.
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was DY21. The hybridization target for chromosome 18 was D18Z1. The 

probes were purchased pre-denatured and pre-mixed with appropriate 

hybridization buffer. Each nucleus, fixed onto an individual glass microscope 

slide, was denatured in the following way: 100 uL of denaturing solution 

consisting of 70 uL formamide, 10 uL 20X SSC, and 20 uL water, was placed 

on top of the nucleus and covered with a 22 mm x 40 mm coverslip. The 

microscope slide was then placed on a glass plate in an oven at 80° C for 5 

minutes. After removing the coverslip, the denatured nucleus was dehydrated 

in an ethanol series (70%, 85%, 100%) for 1 minute in each dilution. Each slide 

was allowed to air dry before being placed on a slide warmer at 50° C for 2-3 

minutes. Two uL of the probe mixture was applied to the target area and 

covered with a small coverslip prepared by quartering a 22 mm x 22 mm 

coverslip using a diamond tip pen. After excluding air bubbles, the coverslip 

was sealed with rubber cement. Hybridization was allowed to proceed 

overnight in a moist chamber at 37° C. The post-hybridization washes used to 

remove excess probe consisted of a 2 minute wash in 0.4X SSC/0.3% NP-40 at 

73° C followed by a 1 minute wash in 2X SSC/0.1% NP-40 at room 

temperature. After allowing the slides to air dry protected from direct light, 10 uL 

DAPII counterstain was applied to the target area and covered with a 22 mm x 

22 mm coverslip.

Fluorescence microscopy for evaluation of the nuclei was performed on a 

Nikon epifluorescent microscope equipped with four single bandpass filter sets: 

a filter set for viewing ultraviolet light was used to locate the DAPI- 

counterstained nuclei; a filter set for viewing green fluorochromes was used to 

identify chromosome X; a filter set for viewing red fluorochromes was used to
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visualize chromosome Y; and a filter set for viewing the aqua fluorochrome was 

used to identify chromosome 18. In addition, a triple bandpass filter set which 

allows simultaneous viewing of all three fluorochromes was used to photograph 

the nuclei. Figure 3 shows the nucleus of a blastomere obtained from a human 

embryo viewed with the ultraviolet filter (A), and the triple bandpass filter (B) 

showing a normal male complement (XX1818). A computerized image 

analysis system was not used at any time. Initial location of the nucleus was 

performed using the Reid Finder microscope slide and the coordinates 

recorded during the fixation procedure,

a. Scoring Criteria

The scoring criteria described by Hopman and coworkers (1988) were 

followed. Signals of low intensity, most likely the result of cross-hybridization to 

non-target DNA, were not scored. Double signals, two signals found close 

together or interconnected which may represent sister chromatids or split 

signals due to the nature of the target alphoid sequences, were scored as one 

signal.

In addition, since all or most of the blastomeres from each embryo were 

analyzed, the criteria described by Munne et al. (1995) were used to distinguish 

FISH failure from true mosaicism:

1) Blastomeres with one signal per chromosome analyzed were considered 

haploid cells.

2) Blastomeres with three or more signals per chromosome analyzed were 

considered polyploid cells.

3) Embryos in which all of the blastomeres analyzed contained the same 

abnormality, whether aneupioidy, haploidy, or polyploidy, were considered 

genetically abnormal.
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Fig. 3 FISH analysis using probes for chromosomes 
X (green), Y (red), and 18 (blue) of a nucleus from a 
blastomere obtained from a human embryo. (A) DAPI- 
counterstained nucleus viewed with an ultraviolet filter 
set; (B) The same nucleus viewed with a triple bandpass 
filter set showing a normal male complement (XY1818). 
Original magnification x 600.
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4) Embryos in which sibling blastomeres had extra or missing signals 

compensating for those missing or extra in another blastomere were considered 

“compensated mosaic” embryos.

5) All other blastomeres with more or less than two signals for each 

chromosome analyzed were considered FISH failures.

In addition, blastomeres with a nucleus observed under phase microscopy 

following fixation, but either not found or covered by debris following FISH 

analysis, were considered FISH failures.

b. Lymphocyte Controls

Lymphocyte control slides, prepared using standard cytogenetic 

technique, were used to determine the efficiency of the FISH procedure. A total 

of 300 nuclei obtained from a healthy male were scored.

c. Embrvo Classification

The following definitions were used to classify the embryos:

Normal: An embryo in which all blastomeres analyzed contain a single nucleus 

with the same normal diploid complement.

Mosaic: An embryo containing blastomeres with two or more different genetic 

complements, indicating the presence of two or more different cell lines. In a 

diploid mosaic, one of the cell lines is a normal diploid complement. Also 

included in this group are all embryos with one or more multinucleated 

blastomeres and/or blastomere(s) with a fragmented nucleus.

Aneuploid: An embryo in which all of the blastomeres analyzed contain the 

same genetic abnormality.

Abnormal Nuclear Morphology: An embryo in which 50% or more of the 

blastomeres demonstrated abnormal nuclear morphology, i.e. they were either 

multinucleated or contained a fragmented nucleus. Rgure 4 illustrates the
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difference between a multinucleated blastomere (A) and one containing nuclear 

fragments (B). In a multinucleated blastomere, the nuclei, which usually 

number two but occasionally number 3 or more, are roughly the same size and 

round in shape. In a blastomere with a fragmented nucleus, many (>5) smaller, 

irregularly-shaped pieces of nuclear material are present.

5. Statistical Analysis

Data was collected on two groups of embryos. One group (Immatures) 

consisted of 61 embryos derived from oocytes that were Prophase I at 

collection, and the other group (Matures) consisted of 65 embryos derived 

from oocytes that were either Metaphase I or II at collection. Patient information 

was compared between the two groups using unpaired t-tests for the following 

continuous variables: age at retrieval, # amps of hMG administered, # amps 

FSH administered, # mature oocytes aspirated, # mature oocytes that fertilized 

normally, and the # of embryos transferred. Comparisons between the two 

groups were made with contingency table analysis (Chi-square) for categorical 

variables: stimulation protocol, highest transfer grade, establishment of a fresh 

pregnancy, and establishment of a cryo pregnancy.

Comparisons between the two groups with respect to embryo information 

were made as follows. An unpaired t-test was used to compare the mean 

number of blastomeres per embryo. A Chi-square test was used to compare the 

number of embryos in each group classified as Normal, Mosaic, Aneuploid, and 

containing Abnormal Nuclear Morphology according to the classification system 

outlined above. Chi-square tests were used to compare embryo classification 

with the following variables: patient age, type of infertility, stimulation protocol, 

highest grade of embryo(s) transferred, and fresh and cryo pregnancy status. In 

addition, a Chi-square test was used to compare the number of blastomeres in
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Fig. 4 Phase contrast photographs illustrating the 
difference between a multinucleated blastomere (A) and 
a blastomere containing a fragmented nucleus (B). The 
blastomeres were obtained from two different human 
embryos. Original magnification x 600.
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each group that were lost during fixation, were anuclear, contained a single 

nucleus, contained multiple nuclei, contained a fragmented nucleus or nuclei, 

and contained metaphase spreads, independent of the embryos from which 

they came. Non-parametric rank tests were used to compare the number of 

blastomeres in each group that were lost during the FISH procedure, were lost 

during fixation, were anuclear, contained a single nucleus, contained multiple 

nuclei, contained a fragmented nucleus or nuclei, and contained metaphase 

spreads.

6. Photography

Embryos and individual blastomeres were evaluated and photographed 

using a Nikon inverted microscope equipped with Hoffman optics and Kodak 

Technical Pan film (ASA 100). The fixed nuclei were evaluated and 

photographed using an Olympus phase-contrast microscope and Kodak 

Technical Pan film (ASA 100). Fluorescent signals were evaluated and 

photographed using a Nikon epifluorescent microscope and Kodak Gold film 

(ASA 400).
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IV. RESULTS

A. Patient Information. Transfer Status, and Pregnancy Outcome

A total of 130 cryopreserved pronuclear stage embryos derived from 

oocytes that were mature (Metaphase I or II) at collection were donated by 27 

patients in 28 stimulated cycles. Sixty-nine embryos survived the thaw for an 

overall survival rate of 53%. Two of these embryos were found to contain one 

pronucleus at thaw, and both arrested at this stage of development. Three 

embryos were lost before fixation. In addition, one of these patients also 

donated 2 cleavage-stage embryos, and one of these embryos survived the 

thaw and was included in the study. A final count of 65 embryos derived from 

mature oocytes were analyzed. These embryos were donated by 17 patients in 

17 stimulated cycles. One patient was an oocyte recipient, and the remainder 

were infertility patients using their own oocytes. The types of infertility were as 

follows. There were 4 patients with tubal factor infertility, 3 with luteal phase 

defects, 3 with male factor infertility, 2 with immunologic factors, 2 with idiopathic 

infertility, 1 with endometriosis, and 1 with an ovulatory defect. Twelve (71%) of 

the patients received luteal lupron. Two patients (12%) received follicular 

lupron. Three patients (18%) received no lupron.

There were 64 embryos derived from oocytes that were Prophase I at 

aspiration donated by 23 patients in 27 stimulated cycles. Ten of these 

embryos were cryopreserved at the pronuclear stage. Three embryos did not 

survive the thaw, leaving 61 embryos from 23 patients for analysis. Twenty-one 

of these patients were oocyte donors. The remaining 2 were infertility patients, 

one diagnosed with polycystic ovaries and the other with tubal infertility. All 

patients received luteal lupron.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

36

Comparisons between the two groups, designated as Mature and 

Immature based on the nuclear status of the oocyte at aspiration, were as 

follows. The average age of patients in the Mature group was 35.5 +/- 2.7 

years compared to 28.0 +/- 3.8 years for patients in the Immature group. This 

difference was statistically significant (p < .0001). Table 1 presents information 

on various IVF parameters collected in an attempt to compare the patient 

response to stimulation between the two groups. Note that the fertilization rate, 

the number of embryos transferred, embryo grade, and pregnancy outcomes for 

oocyte donors in the Immature group actually pertain to their respective 

recipients). In other words, these values were achieved with those oocytes, 

mature at aspiration, received by the recipients. Twenty-two oocyte donors had 

one recipient and 3 had two recipients. The fertilization rate was significantly 

higher in the Mature group than in the Immature group (88% vs. 67%, p = 

0.00001). No other differences were statistically significant (Table 1).

B. Maturation and Fertilization of Proohase I Qocvtes

Of 176 Prophase I oocytes aspirated, 159 were inseminated. Of those 

inseminated, 71 fertilized normally, for a fertilization rate of 44.7%. Results on 7 

embryos were lost to technical difficulties early in the study. As mentioned 

above, 3 of 10 embryos that were cryopreserved did not survive the thaw, 

leaving 61 embryos derived from Prophase I oocytes for analysis. The mean 

number of Prophase I oocytes aspirated per cycle was 6.5 +/- 4.1 and ranged 

from 2 to 16. The mean number of Prophase I oocytes inseminated per cycle 

was 5.9 +/- 3.7 and ranged from 1 to 15. The mean number of Prophase I 

oocytes that fertilized normally per cycle was 2.6 +/-1.7 and ranged from 1 to 6.
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TABLE 1. IVF Parameters For Mature Oocytes In the Mature and Immature Groups

Group No. Mature Oocytes Fertilization No. Embryos Embryo Grade Fresh Pregnancy Cryo Pregnancy 
Aspirated Rate(%) Transferred 1or2(%) Rate(%) Rate(%)

Mature 15.5+/-10.9 231/264(88)® 3.4+/- 1.4 24/27(89) 6/15(40) 5/8(63)

Immature* 16.1 +/-6.8 291/436(67)® 3.7+/-1.3 13/15(89) 14/27(53) 4/5(80)

® p = .00001
* Information on fertilization, transfer, and pregnancy outoome refer to mature oocytes received by recipient(s),
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C. Nuclear Status of Individual Blastomeres

A total of 331 blastomeres from 65 embryos were analyzed in the 

Mature group. A total of 342 blastomeres from 61 embryos were analyzed in 

the Immature group. The mean number of blastomeres per embryo was 5.1 

+/- 2.3 and 5.6 +/- 2.6 for the Mature and Immature groups respectively (NS). 

Table 2 presents the nuclear status of the individual blastomeres independent 

of the embryos from which they came. Also included are those blastomeres 

lost during the fixation procedure. The Mature group contained a significantly 

greater percentage of blastomeres with a single nucleus than the Immature 

group (56% vs. 33%, p < .0001). The Immature group had a significantly 

greater percentage of blastomeres with a fragmented nucleus or nuclei than 

the Mature group (19% vs. 3%, p < .0001). The Immature group also had a 

significantly greater percentage of anuclear blastomeres than the Mature 

group (33% vs. 25%, p = 0.0181). No other differences were statistically 

significant (Table 2).

D. Oocvte Maturity and Embryo Classification

Table 3 presents the classification of each of the embryos analyzed 

according to the system outlined in the Methods section. A significantly greater 

percentage of embryos in the Mature group were classified as Normal 

compared to embryos in the Immature group (23% vs. 3%, p = 0.0012). A 

significantly greater percentage of Immatures were classified as Abnormal 

compared to Matures (64% vs. 35%, p = 0.0014). No other differences were 

significant (Table 3). In addition, if the mosaic embryos in each group are 

reevaluated disregarding multinucleated blastomeres and blastomeres 

containing a fragmented nucleus (i.e. considering mononucieated blastomeres
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TABLE 2. Nuclear Status of Individual Blaatomeres In the Mature and Immature Groups

Group Single Nucleus Multiple Nuclei Fragmented Anuclear Metaphase Lost During Total
(%) (%) Nucleus (%) (%) Spreads (%) Fixation (%)

Mature 185(56)* 44(13) 11 (3)b 82(25)c 2(1) 7(2) 331

Immature 114(33)* 3?(11) 65(19)b 113(33)° 9(3) 4(1) 342

* p <  0001 
b p < .0001 
° p = .0181

w(£>
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TABLE 3. Oocyte Maturity and Embryo Classification

Group Normal Aneuploid Mosaic Abnormal Nuclear Didn't Cleave Technical
(%) (%) (%) Morphology (%) (%) Failure (%)

Mature 15/65(23)3 0 (0) 22/65(34) 23/65 (35)b 3/65(5) 2/65(3)
Immature 2/61 (3)a 2/61(3) 14/61(23) 39/61 (64)b 3/61(5) 1/61(2)

a p = .0012 
b p = ,0014

4*.
O
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only), 15/65 (23.1%) of embryos in the Mature group are mosaic compared to 

13/61 (21.3%) of embryos in the Immature group. This difference is not 

statistically significant Results of the FISH analysis of each individual 

blastomere of all embryos in both groups are presented in Appendix C.

Tables 4 and 5 present oocyte maturity and embryo classification for 

embryos with less than 4 blastomeres and embryos with 4 or more 

blastomeres respectively. There were no significant differences between the 

Mature and Immature groups when only those embryos with less than 4 

blastomeres were considered (Table 4). However, when only those embryos 

with 4 or more blastomeres were considered, a significantly greater percentage 

of Matures were normal compared to Immatures (30% vs. 4%, p = 0.0009). A 

significantly greater percentage of Immatures were classified as having 

abnormal nuclear morphology compared to Matures (64% vs. 28%, 

p = 0.0006) (Table 5).

E. Other Patient Variables and Embrvo Classification

There were no significant relationships between the following patient 

variables and embryo classification for either Matures or Immatures: patient 

age (p = 0.1509 and p = 0.6385 respectively); highest embryo grade at transfer 

(p = 0.3983 and p = 0.3831 respectively); and establishment of a pregnancy (p 

= 0.0971 and p = 0.6075 respectively). In the Mature group, there was no 

significant relationship between the following types of infertility and embryo 

classification (p = 0.1328): idiopathic, immunologic, luteal phase defect, male 

factor, and tubal factor infertility. There were too few embryos in the remaining 

groups (endometriosis, ovulatory, polycystic ovarian disease) for statistical 

analysis. Also in the Mature group, there was no significant relationship
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TABLE 4. Oocyte Maturity and Embryo Classification for Embryos With Less Than 4 Blastomeres

Group Normal Mosaic Abnormal Nuclear Other Total No,
(%) (%) Morphology (%) (%) of Embryos

Mature 0(0) 3/15(20) 9/15(60) 3/15(20) 15

Immature 0(0) 0(0) 7/11(64) 4/11(36) 11
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TABLE 5. Oocyte Maturity and Embryo Classification For Embryos With 4 or More Blastomeres

Group Normal Mosaic Abnormal Nuclear Other Total No.
(%) (%) Morphology(%) (%) of Embryos

Mature 15/50 (30)a 19/50(38) 14/50(28)b 2/50(4) 50

Immature 2/50 (4)a 14/50(28) 32/50 (64)b 2/50(4) 50

a p = .0009
b p = .0006

6
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between stimulation protocol and embryo classification (p = 0.0057).

F. Lymphocyte Controls

Of the 300 lymphocyte nuclei scored, 297 contained one signal for 

chromosome X (99%), and the remaining 3 nuclei contained no signal for X 

(1%); 293 nuclei contained one signal for chromosome Y (98%), 4 contained no 

signal for Y (1%) and 3 contained 2 signals for Y (1%); 286 nuclei contained 

two signals for chromosome 18 (95%), 9 contained only one signal for 18 (3%), 

and 5 contained 3 signals for 18 (2%).

G. Efficiency of the FISH Procedure

In the Mature group, 7/331 (2%) blastomeres were lost during the 

fixation procedure, and 2/324 (0.6%) nuclei were either covered with cytoplasm 

or without clear signals following the FISH procedure. In the Immature group, 

4/342 (1.2%) were lost during the fixation procedure, and 5/338 (1.5%) nuclei 

were either covered with cytoplasm or without clear signals following FISH.
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In the present study, FISH analysis using ONA probes specific for 

chromosomes X.Y, and 18 was used to compare 61 embryos derived from 

Prophase I oocytes to 65 embryos derived from Metaphase I or II oocytes. We 

report that only 2 (3%) of the embryos in the Immature group were normal. 

This was significantly lower (p = 0.0012) than the percentage of normal 

embryos in the Mature group (23%, Table 3). An embryo was considered 

normal when all of the analyzed blastomeres contained a single nucleus with 

the same normal diploid complement.

The percentage of embryos classified as having abnormal nuclear 

morphology was significantly higher (p = 0.0014) in the Im m ature group (62%) 

than in the Mature group (34%). As defined in the Methods section, embryos 

in which 50% or more of the blastomeres were either multinucleated or 

contained a fragmented nucleus were classified as having abnormal nuclear 

morphology. Since the incidence of multinucleated blastomeres was the same 

in the two groups (13% vs 11% in the Matures and Im m atures respectively), 

a difference in the incidence of blastomeres with a fragmented nucleus was 

responsible for this observed difference between the groups. Indeed a greater 

percentage of blastomeres in the Immature group (19%) contained a 

fragmented nucleus compared to their counterparts in the M ature group (3%, p 

<0.0001, Table 2).

In a study of 1145 blastomeres from 147 normally fertilized human 

preimplantation embryos, Hardy et al. (1993) reported that 28 (2.4%) contained 

a fragmented nucleus. Although the nuclear status at aspiration of the oocytes 

from which these embryos were derived was not specifically mentioned, it can
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be assumed that they were mature since insemination occurred the day of 

aspiration and fertilization assessment the following day. The investigators 

speculated that fragmented nuclei represent a form of cell death similar to 

apoptosis, with further degradation of the DNA fragments resulting in anuclear 

blastomeres. Interestingly, we report that the percentage of anuclear 

blastomeres was also significantly higher in the Immature group than in the 

Mature group (33% vs. 25% respectively).

Juriscova and coinvestigators (1996) published a study in which they 

used combined nuclear and terminal transferase-mediated DNA end labeling 

(TUNEL) to detect signs of DNA fragmentation compatible with programmed cell 

death (PCD) via apoptosis in arrested human preimplantation embryos. One of 

the characteristics of cell death via apoptosis, as opposed to necrosis, is DNA 

degradation into oligonucleosomal fragments which can be demonstrated by 

the appearance of DNA “laddering” on agarose gel electrophoresis. The small 

number of blastomeres in preimplantation embryos renders gel electrophoresis 

impractical. However, an in situ technique utilizing TUNEL (Gavrieli et al.,

1991), allowed the authors to demonstrate extensive DNA fragmentation in the 

nuclei of blastomeres from arrested human embryos. They concluded that PCD 

with subsequent apoptosis may be responsible for the extensive fragmentation 

observed in human embryos cultured in vitro, ultimately leading to cleavage 

arrest. True PCD is genetically programmed, requiring activation of specific 

genes for execution. The genes responsible, as well as the “trigger” which 

activates them in human embryos, remain to be identified. In the present 

study, nuclear fragmentation was much more prevalent among disaggregated 

blastomeres in the Immature group than in the Mature group. Sixty-four 

percent of the embryos in the Immature group had one or more blastomeres
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with a fragmented nucleus compared to 11% of embryos in the Mature group. 

Of 11 blastomeres in the M ature group in which a fragmented nucleus was 

observed, 4 were from the same embryo, and represented all of the cells from 

that embryo. The remaining 7 cells were from 6 embryos, all of which 

demonstrated abnormal nuclear morphology.

Apoptosis has also been implicated in the process of follicular atresia in 

avian as well as mammalian species (Tilly et al., 1991). Using DNA analysis by 

either ethidium bromide staining or 3’-end labeling followed by 

autoradiography, the investigators demonstrated the presence of DNA 

fragments characteristic of apoptosis in atretic but not normal, healthy follicles 

obtained from chicken and porcine ovaries. We speculate that Prophase I 

oocytes obtained following COH may come from follicles that have already 

begun the process of atresia, the effect of which is profound on the oocyte 

within. Indeed the fact that these follicles are large enough to be identified and 

punctured at aspiration suggests at least a limited exposure and response to 

the gonadotropins used for stimulation. Although these follicles were ‘‘selected” 

by the ovary for inclusion into the “cohort” of developing follicles, their oocytes 

failed to respond completely with a resumption of meiosis. Despite the fact that 

some of these oocytes are able to mature upon removal from the follicle, and to 

fertilize and sustain apparently normal development following insemination, 

perhaps their fate, to become one of several million oocytes destined for atresia, 

has already been sealed.

It is well known that early embryogenesis is dependent upon and 

directed by macromolecules and organelles synthesized during the final stages 

of oocyte growth and maturation (Telford et al., 1990; Wassarman and Kinloch,

1992). In particular, maternally-derived messenger RNA transcripts (mRNA)
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vital in supporting early cleavage divisions of the embryo are detectable 

through the 4-6 cell stage in the human embryo (Heikenheimo et al., 1995). 

Activation of the embryonic genome, the timing of which varies among species, 

is thought to occur at the 4-6 cell stage in the human embryo as well (Braude et 

al., 1988), thus marking the commencement of embryonic transcription. In a 

study performed at the Jones Institute (Heikenheimo et al., 1996), levels of 

maternally-inherited mRNA transcripts for c-mos kinase and cyclin -B1, two 

proteins involved in the up-regulation of maturation promoting factor (MPF) 

activity, were not significantly different in Prophase I oocytes and Metaphase II 

oocytes before or after in vitro culture. The authors concluded that the reduced 

developmental potential of embryos derived from Prophase I oocytes may not 

be attributable to extensive degradation of these transcripts during culture or to 

reduced levels of their respective gene products early in development. These 

data can be used to further the theory outlined above, namely that Prophase I 

oocytes from stimulated ovaries are aspirated from follicles that have begun the 

process of atresia. Perhaps a cytoplasmic factor synthesized at or shortly after 

the onset of follicular atresia remains stable through oocyte maturation, 

fertilization and early development, eventually activating genes responsible for 

the execution of cell death via apoptosis, observed as DNA fragmentation in the 

present study.

We acknowledge that the method used in the present study is not the 

most sensitive available for the detection of DNA degradation compatible with 

PCD and subsequent apoptosis. The in situ technique utilizing TUNEL 

described by Gavrieli and coworkers (1991) would have been preferable. 

However, the finding that blastomeres containing a fragmented nucleus are 

prevalent among embryos derived from Prophase I oocytes was not
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anticipated. Indeed, we expected to find a higher incidence of aneuploidy 

and/or mosaicism in embryos derived from Prophase I oocytes compared to 

their counterparts derived from Metaphase I or II oocytes. Although it would 

have been best if the nuclear fragmentation could have been documented in 

the intact blastomere before fixation, helping to rule out the possibility that the 

observed fragmentation was a procedural artifact, it is notable that in the vast 

majority of blastomeres found to contain a fragmented nucleus, a distinct, 

membrane-bound nucleus was not visible under the inverted microscope 

before the fixation procedure. Rather, a “suspicious”, lightened area was 

present within the cytoplasm. We did not recognize the nuclear fragments as 

such until the FISH procedure was performed. Perhaps improved microscope 

optics would have allowed us to observe the fragmentation in the intact 

blastomere. We acknowledge that additional investigation is required to clarify 

this issue.

In the study mentioned briefly above, Hardy et al. (1993) used Hoechst 

33342, a polynucleotide-specific fluorochrome, to label the nuclei of 

disaggregated blastomeres from human preimplantation embryos. In addition 

to the blastomeres with fragmented nuclei, the investigators noted the presence 

of blastomeres with other nuclear abnormalities. The most common of these 

abnormalities, binucleate blastomeres, occurred in 17% of normally fertilized 

embryos at the 2-4 cell stage and in 65% of those at the 9-16 cell stage. 

Although various mechanisms have been implicated in the formation of 

binucleate blastomeres, including cell fusion, nuclear amitotic splitting, and 

acytokinesis, estimates of blastomere volume based on cell diameter and 

measurements of nuclear size in their study led the authors to speculate that 

binucleate blastomeres in human embryos most often arise through a failure of
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cytokinesis between the second and fourth cleavage divisions.

In the present study, there was no difference in the incidence 

of multinucleated blastomeres between the groups. Forty-nine percent and 

44% of embryos in the Mature and Im m ature groups respectively contained 

one or more multinucleated blastomeres. In addition, 13% and 11% of the 

disaggregated blastomeres in the Mature and Immature groups respectively 

were multinucleated. In the Mature group, 80% of these were binucleate 

compared to 63% in the Immature group. Our analysis of binucleate 

blastomeres suggests that at least two of the mechanisms mentioned above, 

acytokinesis and nuclear amitotic splitting, contribute to the formation of 

binucleate blastomeres in human embryos. We observed binucleated 

blastomeres in which each nucleus contained the same number of signals for 

chromosomes X, Y, and 18 as sibling mononucleated cells, and others in which 

the sum of the signals in the two nuclei was the same as that observed in sibling 

mononucleated cells. However, the number and distribution of chromosomes in 

the nuclei of binucleate blastomeres varied greatly, suggesting that other 

mechanisms may be involved as well. Our results are comparable to that 

reported by Munne and coworkers (1993) who found that 11.5% of blastomeres 

from arrested human embryos and 27.6% of blastomeres from normally 

developing human embryos were multinucleated. They also reported that a 

vast majority (79.6%) of the multinucleated blastomeres contained two nuclei.

Another abnormality observed in preimplantation embryos is the 

presence of anuclear blastomeres. Munne et al. (1993) reported the incidence 

of anuclear blastomeres in human embryos as follows: 24.8% of blastomeres in 

arrested embryos; 11% of blastomeres in slow and/or fragmented embryos; and 

4.4% of blastomeres in normally developing embryos. In the present study,
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25% of the disaggregated blastomeres in the Mature group were anuclear and 

33% of their counterparts in the Immature group were anuclear. One possible 

explanation for the higher incidence of anuclear blastomeres in the study 

reported here is that all blastomeres, even those without a visible nucleus under 

the inverted microscope, were fixed and recorded. Some of these may have 

been cytoplasmic fragments. In later stages of development (8-12 cells), it is 

difficult to distinguish an anuclear blastomere from a cytoplasmic fragment.

Nuclear abnormalities in blastomeres of human embryos obtained by IVF 

contribute to developmental arrest, and may explain, in part the low 

implantation and pregnancy rates realized following embryo transfer. Clearly, 

anuclear blastomeres and those with a fragmented nucleus lack the potential 

for further development. Although the exact mechanisms responsible for the 

formation of blastomeres with nuclear abnormalities in IVF-generated embryos 

remain uncertain, it has been suggested that the the culture conditions routinely 

used, likely to be sub-optimal, contribute (Hardy et al., 1993).

The incidence of mosaicism in human embryos may also be related to in 

vitro culture conditions. Mosaicism is defined as the presence of two or more 

different cell lines within a single embryo. In a study in which normally 

developing human embryos obtained from four IVF centers were evaluated 

using FISH with DNA probes specific for chromosomes X,Y, 13,18, and 21, 

Munne and coinvestigators (1997) found that the rate of mosaicism differed 

greatly between the centers, ranging from 11% in one center to 52% in another. 

They concluded that in vitro culture conditions and/or hormonal stimulation 

protocols may affect the incidence of mosaicism in the resulting embryos, 

perhaps explaining in part, the differences in success rates between IVF 

centers. In the study reported here, 34% of embryos in the Mature group were
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mosaic compared to 23% in the immature group. This difference was not 

statistically significant, perhaps due to the fact that the embryos in both groups 

were cultured under identical conditions. As outlined in the Methods section, 

embryos with one or more multinucleated blastomeres and/or blastomeres with 

a fragmented nucleus were automatically classified as mosaic. We 

acknowledge that this classification system may result in an overestimation of 

the incidence of chromosomal mosaicism in preimplantation embryos. In an 

attempt to address this issue, we reevaluated all of the mosaic embryos in each 

group considering only those blastomeres with a single nucleus (i.e. 

disregarding multinucleated blastomeres and blastomeres with a fragmented 

nucleus). Considering mononucleated blastomeres only, 7 of the mosaic 

embryos in the Mature group and one of the mosaic embryos in the Immature 

group would be classified as normal, changing the incidence of mosaicism in 

the Mature group from 34% to 23%, and in the Immature group, from 23% to 

21%. Although this difference is still not statistically significant, it did make the 

difference in the incidence of normal embryos in the two groups more apparent 

(34% in the Mature group vs. 5% in the Immature group).

The occurrence of mosaicism in human embryos is of great interest 

because it has profound implications on the relatively new field of 

preimplantation genetic diagnosis. Embryo biopsy, the removal of one or two 

blastomeres from a preimplantation embryo for the purpose of genetic analysis, 

could lead to misdiagnosis in the case of a mosaic embryo. It has been 

suggested that there is a mechanism which diverts abnormal cells to the 

trophectoderm, thereby selecting against them during embryonic development 

(James and West, 1994). In this way, chromosomally abnormal cells are 

prevented from participation in the formation of the embryo proper. Whether or
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not mosaicism occurs in normally conceived human embryos remains 

uncertain.

We also investigated the incidence of aneuploidy for chromosomes X,Y, 

and 18 in the two groups of embryos. Aneuploidy, defined as a chromosomal 

constitution different from the normal diploid constitution by loss or duplication 

of one or more chromosomes or chromosome segments, was found to be low in 

both the Mature (0%) and Immature (3%) groups. This is in contrast to a rate 

of 5.3% reported by Munne et al. (1995). There are several possible 

explanations for this discrepancy between the two studies. First, the average 

age of patients in the study presented here was quite low, 35.5 +/- 2.7 years and 

28.0 +/- 3.8 years in the Mature and Immature groups respectively. While our 

data includes only one embryo from a patient over 38 years of age, more than a 

third of the embryos in Munne's study were from patients 40 years of age or 

older. In addition, although Munne reported a significant increase in 

aneuploidy with maternal age, this increase was mostly due to an increase in 

aneuploidy for chromosomes 13 and 21. Indeed the trend toward increasing 

aneuploidy for gonosomes and chromosome 18 in his study, which began only 

after 40 years of age, did not reach statistical significance. Lastly, according to 

Munne’s classification system, embryos are both mosaic and aneupioid when 

the average of their cells, corrected for errors in ploidy, are aneupioid for a 

specific chromosome. In the present study, such embryos were classified as 

mosaic only.

Although an ideal study designed to evaluate the effect of oocyte maturity 

at aspiration on embryo classification would evaluate embryos derived from the 

different types of oocytes obtained from the same patients, the realities of 

human reproduction make this impractical. We feel justified in comparing
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embryos in the M ature and Immature groups, because evaluation of various 

IVF parameters in the patients from which they came suggests a similar 

response to stimulation (Table I). With the exception of the fertilization rate, 

which was significantly lower in the Immature group, there were no differences 

between the groups. Note that information on fertilization, transfer, and 

pregnancy outcome for oocyte donors in the Immature group pertain to the 

mature oocytes received by their recipient(s). With this in mind, one possible 

explanation for the lower fertilization rate in the Immature group is an 

unsuspected male factor infertility in the oocyte recipient couple. Indeed there 

were several cases in which fertilization was poor, including one in which of 23 

mature oocytes donated to a single recipient, only 5 fertilized normally.

A total of 176 Prophase I oocytes were donated for this study, and 

following insemination, 45% fertilized as evidenced by the presence of two 

pronuclei. This fertilization rate was low compared to the 80% previously 

published (Veeck, 1984), but may may be due in part to the fact that some of the 

inseminated oocytes were arrested at the germinal vesicle stage. In order to 

reduce the amount of extra work required for this study, many Prophase I 

oocytes were inseminated the day after aspiration without assessing their 

nuclear status, including some that had failed to undergo germinal vesicle 

breakdown. In addition, we evaluated more recent data from the clinical 

laboratory on the fate of Prophase I oocytes collected from January of 1995 to 

March of 1996 (Series 58-62) and found that 46% of the Prophase I oocytes 

aspirated matured in vitro, and of those that were inseminated, 60% fertilized 

(unpublished data, Jones Institute database).

In the study reported here, we were unable to detect a correlation 

between patient age and embryo classification in either the Mature or
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Immature group. This may be due to the fact that the embryos we analyzed 

were from relatively young patients. This is especially true of the oocyte donors 

in the Immature group. Such a correlation is likely to become more apparent 

in embryos from older patients. In the Mature group, there was no significant 

relationship between stimulation protocol and embryo classification or type of 

infertility and embryo classification. If these correlations exist, detection may 

require analysis of a larger group of embryos.

We acknowledge several differences in the two groups of embryos in our 

study which may have contributed to the results we observed. For example, all 

of the embryos in the Mature group were cryopreserved and subsequently 

thawed before analysis. In contrast, all but 7 of the embryos in the Immature 

group were fresh. In addition, embryos in the Immature group, by virtue of the 

fact that they were derived from Prophase I oocytes which required a 24-36 

hour incubation period to complete nuclear maturation before insemination, 

were in culture one day longer than embryos in the Mature group. It is 

possible that this extra day in culture conferred instability to the nuclear 

membrane in blastomeres from these embryos, observed as nuclear 

fragmentation in our study. If so, perhaps a change in culture conditions would 

correct this problem. Indeed, Lanzendorf and coworkers (1996) demonstrated 

that embryos derived from Prophase I oocytes differ in culture requirements 

than embryos derived from Metaphase I or II oocytes in the cynomolgus 

monkey.

We also caution that our findings may not apply to ail Prophase I oocytes 

obtained following COH. In a study performed at the Jones Institute, Moffitt and 

coinvestigators (1993) found that Prophase I oocytes from large cohorts and 

cohorts with a greater percentage of Prophase I oocytes may have a greater
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developmental potential than those from smaller cohorts and cohorts with a 

greater percentage of Metaphase I and II oocytes.

In summary, the present findings suggest that few embryos derived from 

Prophase I oocytes are normal, perhaps explaining in part why they rarely 

establish pregnancies in our IVF program. Comparison of the incidence of 

nuclear abnormalities observed in blastomeres in the two groups revealed that, 

although there was no difference in the incidence of multinucleated 

blastomeres, embryos derived from Prophase I oocytes had a significantly 

higher incidence of both anuclear blastomeres and blastomeres with a 

fragmented nucleus than their counterparts derived from mature oocytes. 

Because nuclear fragmentation is a hallmark of programmed cell death via 

apoptosis, which has been implicated in the processes of follicular atresia in 

vivo and cleavage arrest iv vitro, we speculate that Prophase I oocytes obtained 

following COH originate from follicles in early stages of atresia.
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APPENDIX A

Ultrastructural and Molecular Evaluation of Preembryos Resulting from
Immature Human Oocytes

The following protocol (Appendix A1) and consent forms (Appendices A2 

and A3) were submitted to and approved by the Institutional Review Board of 

Eastern Virginia Medical School on September 27, 1994. The consent form in 

A2 was used to obtain immature oocytes. The consent form in A3 was used to 

obtain semen for the insemination of donated oocytes. These forms were 

distributed and the nature of the study explained to all donors. Information 

concerning donor identity was kept confidential.
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APPENDIX A1

ULTRASTRUCTURAL AND MOLECULAR EVALUATION OF PREEMBRYOS 

RESULTING FROM IMMATURE HUMAN OOCYTES

Background

Before ovulation, the human oocyte, located within the follicle of the 

ovary, is immature and cannot be fertilized. The nucleus of the immature oocyte, 

defined as the germinal vesicle (GV), contains chromosomes arrested at the 

prophase I stage of meiosis. This arrest must be overcome and meiosis must 

continue before the oocyte can support the development initiated by a 

penetrating spermatozoon. While arrested, the oocyte increases in size and 

develops associated cells (granulosa and theca cells) and membranes. 

Appropriate hormonal stimulation at the time of ovulation initiates cytoplasmic 

and nuclear maturation. The nuclear membrane disappears and the nucleus 

completes the first meiotic division. The progression of the oocyte to the 

metaphase II (Mil) stage of development confers "fertilizability" to the oocyte, 

allowing it to take part in sperm incorporation, the cortical reaction, and 

decondensation of sperm chromatin.

In vitro fertilization (IVF) protocols routinely utilize exogenous hormonal 

stimulation to increase the number and growth of ovarian follicles. As a result of
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the complexities of folliculogenesis, even in spite of adequate stimulation, 

oocytes retrieved will vary in maturational stage (Testart et al., 1983; Veeck, 

1986). Mature preovulatory oocytes are typically inseminated soon after 

collection and, in humans and monkeys, demonstrate the highest rate of 

fertilization and pregnancy following transfer.

Oocytes deemed immature at the time of recovery may be cultured in 

vitro, allowing for the completion of nuclear maturation. However, these in vitro 

matured oocytes demonstrate low rates of fertilization and pregnancy (Testart et 

al., 1983, Veeck, 1986, 1989; Lanzendorf et al., 1990). Therefore, the stage of 

oocyte maturity at collection plays a large part in IVF outcome, and 

hyperstimulation protocols are used which provide the greatest number of 

mature oocytes.

Gene Expression in the Maturing Oocvte

In the early 1970s it was discovered that cytoplasm of the mature frog 

oocyte activated meiosis and maturation when injected into the immature oocyte. 

This activating agent was termed maturation promoting factor (MPF) and was 

found to be contained in the mitotic cells of all eukaryotes tested including the 

human. Following its purification, MPF was found to be a high-molecular-weight 

protein with protein kinase activity. Studies performed in the sea urchin 

uncovered a protein referred to as cyclin, which accumulated in dividing cells in
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a cyclic fashion, disappearing at the met^ihase-an^hase transition In a series 

of experiments, cycfin was found to cause cell division. F irther studies indicated 

cydin easts in a protein complex with protein kinase activity and that this 

complex is MPF (Draetta ef al.. 1989).

The cellular counterpart of a viral proto-oncogene, c-mos has been shown 

to phosphorylate cydin. In the mouse, expression of c-mos is restricted to a few 

tissues, such as the ovary and testis (Propst & Vande Woude. 1985). In situ 

hybridization studies also suggest that c-mos is expressed in developing 

oocytes of the mouse (Goldman et al., 1987). During meiotic maturation to 

metaphase II, the level of c-mos transcripts decrease by approximately 20% 

(Mutter et ai, 1988). This level of transcripts continues to fall after fertilization 

and is undetectable from the 2-cell to blastocyst stage (Goldman et a i. 1988).

In the mouse, lactate dehydrogenase (LDH) activity is found at very high levels 

in grown oocytes. The synthesis of LDH accounts for as much as 1.8% of total 

protein synthesis during oocyte growth and has been shown to decrease 7 and 

20-fold during meiotic maturation and fertilization, respedively (Cascio & 

Wassarman, 1982). The steady-state level of this energy metabolism gene 

decreases by only 20% during meiotic maturation, however, LDH synthesis falls 

7-fold. Similar patterns of synthesis and mRNA levels during meiotic maturation
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are seen with beta-actin and are attributed to deadenylation (Bachvarova eta!., 

1985; Paynton eta!., 1988)

Hormonal Supplementation of Culture Medium 

Studies to improve in vitro maturation using media supplementation with 

gonadotropic hormones, such as follicle-stimulating hormone (FSH) and/or 

luteinizing hormone (LH), have been performed using many species, including 

the mouse, cat, cow, rhesus monkey and human (Jagiello eta/., 1975; Shea et 

al., 1975; Prins et al., 1987). The majority of these studies have demonstrated 

an increase in maturation, fertilization and cleavage rates. However, despite 

some limited success, adequate controlled studies have not been performed in 

the human.

Jagiello and coworkers (1975) studied the effects of hormone additives on the 

maturation of human oocytes, in a limited study where sizes were small. 

Additives such as LH, estradiol, human chorionic gonadotropin (hCG), cyclic 

AMP, prostaglandins E1 and E2, and prolactin were investigated; only LH, 

estradiol and cyclic AMP were found to be beneficial. In another study, Shea 

and investigators (1975) added progesterone to culture medium and found no 

significant effect on germinal vesicle breakdown or on the number of oocytes 

which matured to Mil. Prins and coworkers (1987) cultured immature oocytes in 

medium supplemented with LH and FSH and demonstrated a significant
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increase in the rate of maturation and fertilization compared to control oocytes. 

No conclusions were made on later development in vivo with these studies.

Coculture of Oocvtes and Preembrvos

In recent years, investigators have utilized coculture techniques to 

enhance the in vitro environment of gametes and preembryos. Coculture 

typically involves the production of an anchorage dependent cell culture (feeder 

cells), such as epithelial cells, upon which another cell type is grown. An 

increase in fertilization rates has been demonstrated in bovine and human 

(Dandekar et al., 1991) oocytes following their maturation on granulosa cell 

cultures obtained from mature, preovulatory follicles. Therefore, the presence of 

granulosa cells during maturation may induce or assist in nuclear and/or 

cytoplasmic maturation in vitro.

Investigators have also demonstrated an increase in cleavage and 

implantation when bovine preembryos, derived from oocytes matured in vitro, 

were cultured with feeder cells (Eyestone & First, 1989; Wiemer et al., 1991). It 

is believed that oviductal cells may secrete certain factors which are beneficial to 

the developing preembryo and provide an environment similar to that in vivo 

(Gondolfi eta!., 1989).
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Specific Aims

The goal of the work proposed is to investigate mechanisms for the 

decreased developmental potential of human oocytes matured in vitro. In 

addition, studies will be performed to optimize rates of in vitro maturation, 

fertilization and cleavage in vitro. The specific aims of this study are:

1. To demonstrate that in vitro matured oocytes and resulting 

preembryos exhibit decreased levels in the expression of genes 

important for cell cycle control and energy metabolism. Levels of 

c-mos, cyclin, actin, and LDH will be determined in immature, in 

vitro matured and in vivo matured human oocytes, as well as 

embryos resulting from in vivo and in vitro matured oocytes.

2. To demonstrate that supplementation of culture with 

gonadotropins, growth factors and feeder cells enhances the rate 

of in vitro maturation and fertilization, and results in development 

comparable to that achieved by in vivo matured oocytes. 

Experimental endpoints will include both ultrastructural, molecular 

and biochemical analysis of oocytes and preembryos.

Preliminary Data

Preliminary investigations have begun to study the expression pattern of 

c-mos in the multiple tissues of the cynomolgus monkey and single oocytes of
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the monkey and human (Heikinheimo etal., in preparation). Using amplification 

of cDNA reverse transcribed from RNA (RT-PCR), expression of c-mos could be 

detected in monkey ovary, testis, pituitary and hypothalamus. Lung, spleen, 

adrenal, kidney and muscle did not reveal any c-mos expression. RT-PCR 

amplification of ft-actin, a house-keeping gene, was used as a reference and 

internal control in the experiments. Equal intensity of the PCR amplified 13-actin 

suggested that approximately equal quantities of starting mRNA was used. In 

addition to the expected size, the identity of the PCR product was verified by 

Southem-hybridization analysis of the amplified DNA fragment using 

oligonucleotide probes internal to the PCR primers. As previously demonstrated 

in the mouse model, we found strong expression of c-mos also detected in 

single monkey and human oocytes. However, no c-mos mRNA could be 

detected in granulosa ceils alone. From these findings, we conclude that c-mos 

is an important, highly oocyte specific maturation factor present in the primate 

oocyte.

Studies are also planned for the evaluation of cyclin B1 in human oocytes 

and early preembryos. We currently have the cyclin B1 primers and have 

successfully amplified cyclin mRNA in as few as two monkey oocytes.

Basic research studies involving the improvement of immature oocyte 

potential has been performed in the monkey model. The monkey model allows
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us the unique opportunity to compare the developmental potential of embryos 

resulting from immature oocytes to that of mature oocytes from the same animal. 

We have established a protocol for obtaining immature, germinal vesicle-intact 

oocytes from one ovary of hyperstimulated cynomolgus monkeys by 

iaparoscopic aspiration 16 hours after hCG administration. At 34 hours after 

hCG, another aspiration is performed and mature oocytes are collected from the 

other ovary. In vitro and in vivo matured oocytes are inseminated at the same 

time using the same sperm sample and fertilization and cleavage rates are 

evaluated and compared between the two groups. Using this protocol, we have 

investigated the beneficial effect of feeder cells on the development of 

preembryos resulting from immature oocytes. While the data show no significant 

benefit to embryos resulting from mature, metaphase II oocytes, only those 

preembryos from immature oocytes cocultured with feeder cells reached the 

expanded blastocyst stage (75%) compared to 0% cultured in medium alone. 

These results suggest that coculture may enhance in vitro development of 

embryos resulting from immature oocytes.
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Experimental Design

Specific Aim 1. To determine if in vitro matured oocytes and 

resulting preembryos exhibit decreased levels in the expression of genes 

important for cell cycle control and energy metabolism. Levels of c-mos, 

cyclin, actin, and LDH will be determined in immature and in vitro matured 

oocytes, as well as preembryos resulting from in vivo and in vitro matured 

oocytes.

For this study, RT-PCR techniques will be utilized to measure 

quantitatively the expression of these cell cycle control and energy metabolism 

genes in human oocytes and preembryos. The levels of expression in immature 

oocytes will be compared to those found in in vitro matured and in vivo matured 

oocytes. It is expected that levels of expression in in vitro mature oocytes will be 

significantly lower than those of in vivo matured oocytes. The expression of 

these genes will also be documented in the fertilized oocytes as well as cleaving 

preembryo to determine at what cell stage their expression is turned off, and if 

preembryos resulting from in vitro matured oocytes are deficient in levels of 

these genes.

2. To determine if supplementation of culture medium with 

gonadotropins, growth factors and feeder cells enhances the rate of in
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vitro maturation and fertilization, and results in development comparable to 

that achieved by in vivo matured oocytes. Experimental endpoints will 

include both ultrastructural, molecular and biochemical analysis of oocytes 

and preembryos.

Immature oocytes will be cultured in medium supplemented with 

gonadotropins and/or growth factors. Controls will consist of oocytes cultured 

without these supplementations. Differences in rates of maturation, fertilization 

and cleavage between treatment and control groups, and fertilization and 

cleavage between treatment groups, controls, and in vivo matured oocytes will 

be recorded for statistical comparison. In addition, resulting preembryos will be 

divided and examined using the following techniques:

A. Ultrastructural evaluation - electron and immunofluorescent 

microscopy will be utilized to examine ultrastructure and cell 

numbers in test and control preembryos. In addition, preembryos 

will be examined for genetic abnormalities using karyotypic 

analysis.

B. Biochemical evaluation - hCG production of cultured preembryos 

will be performed on culture media using RIA techniques and 

compared in test and control preembryos.
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C. Molecular evaluation - preembryos included in this specific aim will 

be evaluated for DNA and mRNA expression using PCR and RT- 

PCR technology.

Specific Aim 2 will also examine the supplementation of culture with 

feeder cells. Maturing oocytes will be cocultured in wells seeded with granulosa 

cells collected from the patient's own follicles at aspiration. Maturation rates will 

be compared to control oocytes cultured in medium only. Comparisons will be 

made between rates of maturation, fertilization, and development between 

treated, control, and oocytes matured in vivo. The effects of coculture in the 

presence of exogenous gonadotropins as well as the appropriate time for 

removal of the oocytes from the granulosa cell environment will also be 

determined. Preembryos resulting from oocytes matured in vitro will be cultured 

with feeder cells and development compared to control preembryos and 

preembryos developing from oocytes matured in vivo. Oocytes used in this 

study will include those resulting from the previous experiment (treated and 

controls) to demonstrate an additive effect by both coculture treatments. In 

addition, resulting preembryos will undergo further evaluation with 

ultrastructural, biochemical and molecular techniques as described on page 9.

For both specific aims, successful experimental outcome will be achieved 

when the in vitro results are statistically comparable to earlier results obtained
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with in vivo matured oocytes. In addition, procedures with successful outcomes 

will be utilized together to determine if combining protocols will produce 

maximum success.

For this study, oocytes will be fertilized using one of two methods:

1. the addition of husband's sperm to the culture dish containing the 

oocyte(s); or

2. fertilization by intracytoplasmic sperm injection (ICSI).

ICSI is currently used clinically to fertilize oocytes for infertile couples. 

This technique, which involves direct injection of a single sperm into the egg, 

has proved to be very efficient in the fertilization of human oocytes.

Consents

For this study, human preembryos resulting from in vitro and in vivo 

matured oocytes will be examined. Evaluation of the preembryos will render 

them nonviable, therefore, they will not be used for initiation of pregnancy.

Two groups of preembryos will be examined: (1) those resulting from in 

vitro matured oocytes (immature at aspiration); and (2) in vivo matured oocytes 

(mature at aspiration). Patients donating the in vitro matured oocytes will be 

consenting to their fertilization with husband's sperm and then use in an assay 

which will render the preembryos nonviable (proposed consent attached).
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The second group of preembryos will be donated by patients who no 

longer wish their frozen preembryos to be stored by cryopreservation. These 

preembryos will include those resulting from both immature and mature oocytes. 

At the patients request, they will be sent a form entitled "Authorization for 

Utilization of Cryopreserved Pre-zygote(s) at the Jones Institute" (see copy 

included). One option that the couple may choose is the use of the stored pre

zygotes for approved research. It is that approval we are requesting in this 

protocol.
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APPENDIX A2

Medical College of Hampton Roads 
Approval Date: September 27, 1994 

IRB # 07-08-93-0043 
Revision Date: August 2, 1995 
Re-Approved: August 22, 1995

SUBJECT CONSENT FORM

TITLE: Ultrastructural and Molecular Evaluation of Preembryos Resulting from 
Immature Human Oocytes

INVESTIGATORS: Susan Lanzendorf, Ph.D., Suheil J. Muasher, M.D., William E. 
Gibbons, M.D., and Jacob F. Mayer, Ph.D.

TELEPHONE: (804) 446-8948 which answers 24 hours a day in case of questions or 
problems.

SOURCE OF SUPPORT: The Jones Institute for Reproductive Medicine

DESCRIPTION: I am being asked to participate voluntarily in this research study, the 
purpose of which is to investigate the developmental potential of immature (Prophase I) 
oocytes (eggs). I understand that many patients have a number of Prophase I eggs. 
These immature eggs can often be matured in the laboratory and may sometimes 
undergo fertilization and early division. Nonetheless, they do not have an equal 
potential to develop into pregnancies as do eggs recovered in a mature state.

The main purpose of this study is to investigate methods to improve the developmental 
capacity of immature human oocytes. As a participant in this study, I am being asked 
to donate immature (germinal vesicle-bearing) eggs which I do not require for transfer 
as a patient undergoing an in vitro fertilization (IVF) attempt through the IVF program 
at the Medical College of Hampton Roads (MCHR).

1 understand that the egg(s) which I donate will be immature and will be matured in 
vitro, using standard maturation techniques employed by the Jones Institute. These 
immature eggs can often be matured in the laboratory and may sometimes undergo 
fertilization and early division. Once matured, all the eggs will be inseminated by my 
husband’s sperm and allowed to develop in vitro to determine whether or not they are 
capable of development. During development, preembryos resulting from the 
immature oocytes will be evaluated using techniques which will render the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

81

p re e m b ry o (s ) non-viable. At no time will resulting preembryos be used to initiate a 
pregnancy in myself or anyone else.

EXCLUSION CRITERIA: I understand that I am being asked to donate immature 
eggs only in the event that I have no history of fertilization failure, [f on the day of 
aspiration, I have six (6) or more mature eggs, my immature eggs may be used for this 
protocol.

RISKS: There are no known risks to me at this time; however, there may be risks not 
yet identified.

BENEFITS: I understand that the pregnancy potential of immature eggs is very low 
and that preembryos resulting from this study will probably not increase my chances of 
achieving a pregnancy. However, much information can be gained from this study, 
which may enable investigators to improve the limited functional capacity of immature 
eggs to produce pregnancy. Scientific information from this study may have 
widespread application for future IVF cycles.

ALTERNATIVE TREATMENT: 1 have been informed that the only known 
alternative treatment is not to participate in this study.

COSTS AND PAYMENTS: 1 understand that there is no additional cost to me for 
participating in this research project, including the cost of future intrauterine 
replacement of preembryos obtained during this cycle. I further understand that I will 
receive no reimbursement for my participation in this study.

NEW INFORMATION: I understand that any new information obtained during the 
course of the research that may affect my willingness to continue participation in this 
study will be provided to me or to my legal representative.

CONFIDENTIALITY: I understand that any information concerning me which is 
derived from this study will be kept confidential, including answers to questionnaires, 
history, laboratory data findings, or physical examination(s) will be kept strictly 
confidential, and that my records will be protected within the limits o f the law.

I also understand that the data derived from this study could be used in reports, 
presentations or publications, but that I will not be individually identified. I understand 
that, in order to ensure that Food and Drug Administration (FDA) regulations are being 
followed, it may be necessary for a representative of the FDA to review my medical 
records. FREE WITHDRAWAL: 1 understand that I am free to refuse to participate 
in this study or to withdraw at any time and that my decision will not adversely affect 
my care at this institution or cause a loss of benefits to which 1 might be otherwise
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entitled. If I do decide to withdraw, I agree to undergo all trial evaluations necessary 
for my safety and well-being, as determined by my physician.

COMPENSATION FOR ILLNESS OR INJURY: I understand that in the unlikely 
event of a physical injury or physical illness resulting from the research procedure, no 
monetary compensation will be made, but any immediate emergency medical treatment 
which may be necessary will be made available to me without charge by the 
investigators. I am advised that if any injury should result from my participation in this 
research project, Medical College of Hampton Roads (MCHR) provides no 
compensation plan or free medical care plan to compensate me for such injuries. In the 
event I believe I have suffered injury as a result of my participation in any research 
program, I may contact Dr. Gerald Pepe, phone (804) 446-8423, an employee of 
MCHR, who will be glad to review the matter with me.

VOLUNTARY CONSENT: I certify that I have read the preceding or it has been 
read to me, that I understand its contents, and that any questions I have pertaining to 
the research and my rights as a research subject have been answered by Susan 
Lanzendorf, Ph.D., Suheil J. Muasher, M.D., William E. Gibbons, M.D., or Jacob F. 
Mayer, Ph.D., whose phone number (804) 446-8948. I have been given a copy of the 
signed informed consent. My signature below means that 1 have freely agreed to 
participate in this experimental study.

Wife’s signature Date

Husband’s signature Date

Witness' signature Date

I certify that I have explained to the above individual the nature and purpose, the 
potential benefits, and possible risks associated with participating in this research study, 
have answered any questions that have been raised and have witnessed the above 
signature. I have explained the above to the volunteer on the date stated on this consent 
form.

Investigator’s signature Date
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APPENDIX A3

Medical College of Hampton Roads 
Approval Date: September 27, 1994 

IRB if 07-08-93-0043 
Revision Date: August 2, 1995 

Addendum Approval Date: August 22, 1995

ADDENDUM TO SUBJECT CONSENT FORM

TITLE: Ultrastructural and Molecular Evaluation of Preembryos Resulting from 
Immature Human Oocytes. II Semen Donors

INVESTIGATORS: Susan Lanzendorf, Ph.D., Mahmood Morshedi, Ph.D., Suheil J. 
Muasher, M.D., William E. Gibbons, M.D., and Jacob F. Mayer, Ph.D.

TELEPHONE: (804) 446-8948 which answers 24 hours a day in case of questions or 
problems.

SOURCE OF SUPPORT: The Jones Institute for Reproductive Medicine

DESCRIPTION: 1 am being asked to participate voluntarily in this research study, the 
purpose of which is to investigate the developmental potential of immature (Prophase I) 
oocytes (eggs). I understand that many in vitro fertilization patients have a number of 
Prophase I eggs. These immature eggs can often be matured in the laboratory and may 
sometimes undergo fertilization and early division. Nonetheless, they do not have an 
equal potential to develop into pregnancies as do eggs recovered in a mature state.

The main purpose of this study is to investigate methods to improve the developmental 
capacity of immature human oocytes. As a participant in this study, I am being asked 
to consent to the use of my sperm (or aportion thereof) which has been previously 
donated or will be donated in the future for the insemination of immature eggs for 
research purposes.

1 understand that resulting preembryos will be evaluated using techniques which will 
render the preembryo(s) non-viable. At no time will resulting preembryos be used to 
initiate a pregnancy in anyone.

RISKS: There are no known risks to me at this time; however, there may be risks not 
yet identified.
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BENEFITS: I understand that much information can be gained from this study, which 
may enable investigators to improve the limited functional capacity of immature eggs to 
produce pregnancy. Scientific information from this study may have widespread 
application for future IVF cycles.

ALTERNATIVE TREATMENT: I have been informed that the only known 
alternative treatment is not to participate in this study.

COSTS AND PAYMENTS: I understand that there is no cost to me for participating 
in this research project. I also understand that, because I have been reimbursed for the 
donation of my semen for initiation o f pregnancy, and the semen to be used for this 
study is excess from my previous donation, I will therefore not be reimbursed for 
consenting to the use my semen in this study.

NEW INFORMATION: I understand that any new information obtained during the 
course of the research that may affect my willingness to continue participation in this 
study will be provided to me or to my legal representative.

CONFIDENTIALITY: I understand that any information concerning me which is 
derived from this study will be kept confidential, including answers to questionnaires, 
history, laboratory data findings, or physical examination(s) will be kept strictly 
confidential, and that my records will be protected within the limits of the law.

I also understand that the data derived from this study could be used in reports, 
presentations or publications, but that 1 will not be individually identified. I understand 
that, in order to ensure that Food and Drug Administration (FDA) regulations are being 
followed, it may be necessary for a representative of the FDA to review my medical 
records.

FREE WITHDRAWAL: I understand that I am free to refuse to participate in this 
study or to withdraw at any time and that my decision will not adversely affect my care 
at this institution or cause a loss of benefits to which 1 might be otherwise entitled. If I 
do decide to withdraw, I agree to undergo all trial evaluations necessary for my safety 
and well-being, as determined by my physician.

COMPENSATION FOR ILLNESS OR INJURY: I understand that in the unlikely 
event of a physical injury or physical illness resulting from the research procedure, no 
monetary compensation will be made, but any immediate emergency medical treatment 
which may be necessary will be made available to me without charge by the 
investigators. 1 am advised that if any injury should result from my participation in this 
research project, Medical College of Hampton Roads (MCHR) provides no 
compensation plan or free medical care plan to compensate me for such injuries. In the 
event I believe I have suffered injury as a result of my participation in any research 
program, I may contact Dr. Gerald Pepe, phone (804) 446-8423, an employee of 
MCHR, who will be glad to review the matter with me.
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VOLUNTARY CONSENT: I certify that I have read the preceding or it has been 
read to me, that I understand its contents, and that any questions I have pertaining to 
the research and my rights as a research subject have been answered by Susan 
Lanzendorf, Ph.D., Mahmood Morshedi, Ph.D., Suheil J. Muasher, M.D., William E. 
Gibbons, M.D., or Jacob F. Mayer, Ph.D., whose phone number (804) 446-8948. I 
have been given a copy of the signed informed consent. My signature below means 
that I have freely agreed to participate in this experimental study.

Donor's signature Date

Witness' signature Date

I certify that I have explained to the above individual the nature and purpose, the 
potential benefits, and possible risks associated with participating in this research study, 
have answered any questions that have been raised and have witnessed the above 
signature. 1 have explained the above to the volunteer on the date stated on this consent 
form.

Investigator’s signature Date
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APPENDIX B

Authorization for Utilization or Disposition of Cryopreserved 
Prezygote(s)/Preembryo(s) at the Jones Institute

Appendix B contains a form distributed to IVF patients of The Jones 

Institute no longer wishing to keep their embryos in cryostorage. Under the 

protocol mentioned above (Appendix A1), we were able to use embryos 

donated for research in our study.
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AUTHORIZATION FOR UTILIZATION OR DISPOSITION OF 
CRYOPRESERVED PREZVCQTEISVPREEMBRYOfS) AT THE JONES

INSTITUTE

We:___________________________________hereby forever irrevocably donate and
transfer to The Jones Institute all of our joint and several rights, titles, and interests in and to 
our _  (number) fertilized human egg(s) - prezygote(s)/preembryo(s) which were frozen and
stored (cryopreserved) at The Jones Institute Cryopreservation Laboratory on , in IVF
cycle number for the following purpose.

Instructions:
-Select below a single (ONE) option agreed to by both husband and wife.
-Circle that ONE option and insert both husband and wife's initials next to YES. 
-Circle the remaining options as NO and insert both husband and wife's initials next to 
NO.

-If you choose to donate to another couple please follow the remaining instructions 
after that option.

YES________  NO________  For use in approved research.
initials initials

YES________  NO________  For thawing without undergoing any further
initials initials development or utilization.

YES________  NO________  For use by another couple selected by The Jones
initials initials Institute, the identity of such couple to be

forever unknown to us. **

*'* If you have chosen to donate to another couple indicate below a secondary 
option to be implemented 2 years from this date if we cannot find another 
couple who will accept your frozen embryos.

YES_______  NO________  For use in approved research.
initials initials

YES_______  NO________  For thawing without undergoing any further
initials initials development or utilization.
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We make this gift and transfer freely, without inducement or compensation, and with full 
knowledge of the finality of our gift.

(Wife's signature) (date)

(Husband's signature) (date)

State o f_____________________________________

City of____________________________________________ , to wit:

Subscribed and sworn before me this________ day o f  , 19_____by

________________________________ and____________________________________

Notary Public_______________________________  My commission expires:_________
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APPENDIX C

Table 6 presents the results of the FISH analysis of each individual 

blastomere in 65 human embryos derived from oocytes that were either 

Metaphase I or Metaphase II at aspiration. Table 7 presents the results of the 

FISH analysis of each individual blastomere in 61 human embryos derived from 

oocytes that were Prophase I at aspiration. We include this information 

because as our knowledge of human embryology increases, our concept of a 

“normal" embryo is likely to change. We may wish to reevaluate these data.
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TABLE 6. FISH Analysis of Embryos in the Mature Group

Embryo # *
Total# 
Cells b

# Anuclear 
Cells

# Nucleated 
Cells Complement for X,Y and 18 c Classification

1-1 4 0 4 XX1818, XX1818, XX1818, XX1818 Normal
1-2 6 3 3 XXXX18181818, X18, XXXX18181818 Mosaic
1-3 2 0 2 XY1818, MNB d (XY1818, XY1818) Abnormal
1-4 1 0 1 MNB (X1818, X18) Didn't Cleave
1-5 6 2 4 MNB ( -e , XX). XXX181818. MNB (-, X18), X18 Abnormal
1-6 4 2 2 XXXY181818, MNB (XY1818. XXX18) Abnormal
1-7 3 0 3 MNB (XY1818, XY1818). XY1818. XY1818 Mosaic
1-8 5 3 2 LOST. XX18 Tech Failure
1-9 2 0 2 XX18, MNB (-. XX, X) Abnormal

1-10 1 0 1 XXYY18181818 Didn't Cleave
1-11 4 0 4 XX1818, XX1818, XX1818, XX1818 Normal
1-12 2 1 1 Fragsf (XY181B) Abnormal
1-13 6 3 3 XX1818, XX1818, X18 Mosaic
1-14 2 1 1 Frags (X[16l °18[16]) Abnormal
1-15 8 4 4 MNB (XX1818, XX1818), X1818, MNB (XX1818, XX1818). 

MNB (XX1818, XX1818)
Abnormal

1-16 3 2 1 Frags (XXYY18181818) Abnormal
1-17 6 4 2 MNB (XXYY1818.1818). XXYY18181818 Abnormal
1-18 4 2 2 Frags (XXY). XI5]Y[5118[0] Abnormal
2-19 7 2 5 XXXX181818, XXXX18181818, X18. X18 Mosaic
3-20 6 1 5 XY1818. XY1818. X1818. XY1818. XY1818 Normal
3-21 3 0 3 XY1818, MNB (XY1818. X1818). XY1818 Mosaic
3-22 7 0 7 XX1818. XX1818, XX1818, XX1818, X1818. XX1818. XX1818 Normal
4-23 4 1 3 X1818, XY1818. XY1818 Normal
4-24 2 0 2 MNB (XX1818, XX1818). MNB (XXX1818, XX1818) Abnormal
4-25 4 0 4 XY1818, XY1818, XY1818, XY18 Normal
5-26 10 0 10 XY1818. X18. XY1818. XY18. XY1818. Y18, XY1818.18. XY1818. X18 Mosaic
5-27 10 7 3 MNB (XX1818,1818), Frags (X181818). Frags (XX1818) Abnormal
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TABLE 6. FISH Analysis of Embryos in the Mature Group

Embryo #
Total # 
Cells

# Anuclear 
Cells

# Nucleated 
Cells Complement for X,Y and 18 Classification

5-28 5 0 4 XY1818, XY1818, XY1818, XY1818 Normal
6-29 8 0 8 X1818, X18, X1818, XX1818, XX1818, X181818, X1818. X1818 Mosaic
6-30 4 0 4 XX1818, XX1818, XX1818, XX1818 Normal
7-31 8 0 5 XY1818, XY1818, XY1818. XY1818, XY18 Normal
8-32 4 3 1 MNB (XY1818, XXY181818) Abnormal
9-33 12 2 10 XY1818, X1818, XY18, X1818. Y. Y. X1818. X1818, XY1818, X18 Mosaic
9-34 6 1 5 XY1818, XY1818, MNB (XXXYYY18181818, XXYY18181818), XY1818, 

XY1818
Mosaic

10-35 6 0 6 MMB (Y. Y, X18), XY1818, X1818, MNB (X18, -), Y18.18 Mosaic
10-36 6 4 2 1818, MNB (XX1818, X) Abnormal
10-37 8 7 1 LOST Tech Failure
11-38 6 0 6 XXX181818. X1818, X1818. XXX181818, XX18, XX18 Mosaic
11-39 5 0 5 XX1818, XX1818, XX1818, XX1818. XX181818 Normal
11-40 4 0 4 MNB (XY1818, X18), MNB (XYY1818, XYY1818), 

MNB (XY1818, XY1818), MNB (XY1818. cvto)
Abnormal

11-41 4 1 3 XY1818, MNB (XY18, X181818), XY1818 Mosaic
11-42 7 0 7 MNB (X1818, XY1818), XY1818, XY1818, X1818, XY1818, XY1818, 

XY1818
Mosaic

11-43 5 0 5 MNB (XY1818, X1818), MNB (XY1818, XY1818), MNB (XY1818, XY1818), 
XY1818, XY1818

Abnormal

12-44 7 0 7 XX1818, XX1818, XX1818, XX1818, XX1818, XX1818, XX1818 Normal
12-45 6 1 4 X18, XY1818, MNB (XY1818. XY1818). meta:XY18 Mosaic
12-46 5 1 4 XX1818, XX1818, XX1818, MNB overlapping (XXXX181818) Mosaic
12-47 4 0 4 MNB (XX18.18, XX1818), XX1818, XX1818, X1818 Mosaic
12-48 1 0 1 XXXY18181818 Oidnt Cleave
12-49 10 2 8 XX1818, MNB (X18, X18), X18, XX1818. XX1818, XX1818. XX1818, X18 Mosaic
12-50 7 0 7 XX1818, XX1818, XX1818, XX1818, XX18. XX1818, XX1818 Normal
12-51 6 1 5 -, MNB (X1818, X18), Y18, XY18, Y18 Mosaic
13-52 7 3 4 MNB (XX1818, X18,18), MNB (X. XX18, -). XX18, X18 Abnormal
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TABLE 6. FISH Analysis of Embryos in the Mature Group

Embryo #
Total # 
Cells

# Anuclear 
Cells

# Nucleated 
Cells Complement for X,Y and 18 Classification

13-53 4 0 4 Frags (XY18), Frags (18). Frags (XY), Frags (XY18) Abnormal
13-54 7 1 6 XY1818, MNB (X, Y, -), XY18181818, XY181818, MNB (X18, X), 

XY18181818
Mosaic

14-55 5 1 4 XY1818, XY1818, XY1818, meta:XY18 Normal
14-56 6 0 6 XX1818, XX1818, X18, XX1818. MNB (X18, X18), XX1818 Mosaic
15-57 4 1 3 XXX1818, MNB (18, X18. X1818), XX1818 Mosaic
15-58 7 3 4 XX1818. XX1818, XX1818. XX1818 Normal
15-59 2 0 2 MNB (X1818. XX18, XX1818. XX1818), XX18 Abnormal
15-60 3 2 1 Multiple signals for X,18 (no Y) Abnormal
16-61 3 1 2 MNB (X18, XX18), Frags (XXX181818) Abnormal
16-62 3 0 3 MNB (XYY181818,1818), X18, XXY1818 Mosaic
16-63 4 1 3 XY1818, XY1818, XY1818 Normal
17-64 6 5 1 MNB (XXX181818, -, X181818, XX181818) Abnormal
17-65 4 3 1 XXX181818 Abnormal

a : The first number indicates the number of the patient from which the embryo was obtained, and the number following the hyphen 
represents consecutive numbering of the embryos analyzed. 

b : W hen the Total #  of Cells is greater than the sum of the #  Anuclear and the #  Nucleated, one or more blastomeres were lost during analysis. 
c : Genetic complements of the individual blastomeres are separated by commas
d : MNB indicates a multinucleated blastomere. The genetic complements of each individual nucleus is contained within the parenthesis 

separated by commas.
* : Indicates nuclei in which there were no signals.

':  Frags indicates a blastomere with a fragmented nucleus. The total number of signals observed is contained within the parenthesis.
9 . The number in the brackets indicates the total number of signals for the preceding chromosome.

coro
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Table 7. FISH Analysis of Embryos in the Immature Group

Embryo # *
Total # 
Cells b

# Anuclear 
Cells

# Nucleated 
Cells Complement for X,Y and 18c Classification

1-1 4 1 3 Fragsf (XXYY18181818), XY1818,1818 Mosaic
1-2 5 1 4 Frags (XX1818), Frags (XX1818), Frags (XX1818), Frags (XX1818) Abnormal
1-3 1 0 1 Frags (-)e Didn't Cleave
2-4 1 0 1 Frags (-) Didn't Cleave
2-5 4 2 2 MNBd overlapping (X[8|9 Y[4]18[12]), Frags (X[4]Y(1118[6]) Abnormal
2-6 5 2 3 Frags (Xf4lY[8l18[4l). Frags (18171). MNB (18. XX) Abnormal
2-7 4 3 1 XXXYY181818 Abnormal
3-8 8 3 5 XX1818. XXXX181818, MNB (XX18181818. XX1818). XX1818, Frags Mosaic
4-9 8 4 4 XX1818, XX1818, XX1818, XXX1818 Normal

4-10 13 10 3 Frags (-), Frags (XY1818), MNB (XY18.1818) Abnormal
4-11 5 3 2 XXXXYY18181818, Frags (XXYY18I51) Abnormal
5-12 6 2 4 XXXYY181818, XY1818, XXXYY181818. XY1818 Mosaic
5-13 5 2 3 XXYYY18I81. XXX. X[91 Mosaic
5-14 5 4 1 Frags (X[8118[61) Abnormal
5-15 2 1 1 MNB (XI5]Y(3]18[3], XXX) Abnormal
6-16 8 0 8 LOST. XXX181818, XXX181818. LOST, XXX181818, XXX181818, LOST, 

XXX181818
Aneuploid

6-17 12 2 10 XXY181818, XY1818, XY1818, XY1818, Frags (-), Y1818, YY18[5], MNB 
(XY18, X). LOST. LOST

Mosaic

6-18 6 3 3 XXXYYY18[7J, MNB (XY1818, XY1818), MNB (XXYY18181818, 
XXYY18181818)

Abnormal

6-19 4 1 3 MNB (X[6]1818, XYYY18I5], XYY18, YY18), XXXY18, 
MNB (Y18,1818, 18. -,-)

Abnormal

6-20 9 2 7 XY1818, XY1818, XY1818, MNB (XYY181818. -. XY1818, -), 
Frags (XY1818), XY1818, XY1818

Mosaic

7-21 8 4 4 Frags (-), Frags (X1818), Frags (XY18). Frags (1818) Abnormal
8-22 7 0 7 LOST, MNB (XY. 18), MNB (-.XY18), XY1818, XY1818, XY1818, 

Frags (XY1818) Abnormal
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Table 7. FISH Analysis of Embryos in the Immature Group

Embryo # Total#
Cells

# Anuclear 
Cells

# Nucleated 
Cells Complement for X,Y and 18 Classification

9-23 5 4 1 Frags (XXXYYY181818) Abnormal
10-24 12 0 12 XX1818, XX1818, XX18, XX1818, X18, XX18, X1818,

MNB (XX181818, X), X1818, XX1818, meta:XX1818, XX1818
Mosaic

10-25 8 3 5 MNB (XXX181818, XXXX18), Frags (X18), MNB (XX1818, -), MNB (X18, X, 
XX18), 1818

Abnormal

10-26 7 5 2 Frags (XXXYY18181818, Frags (XY181818) Abnormal
11-27 5 2 3 X1818, MNB (X18,18. XY1818 Mosaic
12-28 8 1 7

-. XX1818, Frags (X18), Frags (X18), Frags (XX18), Frags (XX1818). XX18
Abnormal

12-29 3 2 1 XX1818 Abnormal
12-30 8 1 7 XX1818, cyto, XX1818, XX181818, XX1818. XX1818, XX1818 Normal
13-31 8 6 2 MNB (1818, XX, X). Frags (XXX1818) Abnormal
13-32 2 0 2 meta: X18181818. Frags (Xf10]18[10] Abnormal
14-33 4 1 3 MNB (meta: YY1818, X1818). Frags (-). Frags (-) Abnormal
15-34 3 0 3 Frags (X1818), MNB (X. XY18,1818, -). X18 Abnormal
15-35 5 4 1 Frags (XY1818) Abnormal
16-36 2 0 2 X[8]18[5], MNB (XXX1818, XXX18181818, XXX18181818) Abnormal
16-37 7 2 5 18. Frags (XY1818). Frags (XY18). Frags (XYY18181818). X1818 Abnormal
16-38 2 1 1 LOST Tech Failure
17-39 4 2 2 MNB (XX18181818, X), X18 Abnormal
18-40 2 0 2 Frags (XX1818). Frags (X) Abnormal
19-41 4 3 1 Frags (XX1818) Abnormal
20-42 2 1 1 MNB (X18, XY1818, Y18, -) Abnormal
21-43 8 2 6 XXY18181818, MNB (XX, XX1818, 1818), Frags (XX181818), YYY1818, 

XXY18181818, XYYY1818
Mosaic

21-44 6 0 6 XY1818, Frags (XYY1818), MNB (XY1818, XY1818), Frags (-), MNB 
(181818, XY), XY1818

Abnormal

21-45 7 2 5 MNB (1818, X). Frags (XXXY181818), XXXYY1818, meta:-, meta:Y18 Abnormal
21-46 4 0 4 Frags (YY), Frags (XXXY18181818), Frags (XX), meta:- Abnormal
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Table 7. FISH Analysis of Embryos in the Immature Group

Embryo #
Total # 
Cells

# Anuclear 
Cells

# Nucleated 
Cells Complement for X,Y and 18 Classification

21-47 5 1 4 XX18, Frags (XXXX1818), Frags (X1818), Frags (18) Abnormal
21-48 1 1 0 Didn't Cleave
22-49 4 1 3 XXXX18181818, Frags (X1818) Abnormal
22-50 7 3 4 Frags (XXYY1818), Frags (XYY181818), Frags (XXYY181818) Abnormal
23-51 7 0 7 MNB (-, XXX18[61), XX18, XX18[5], XX18, XX18, meta: XX18, XX181818 Mosaic
24-52 5 1 4 Frags (Y18181818), Frags (XXY), MNB (XXYY, 18181818), Frags 

(XXYY181818)
Abnormal

25-53 8 0 8 X1818, XYY18181818, X1818, MNB (XYY1818, X18), X1818, 
MNB (Y1818, XY, Y). X1818, XY1818

Mosaic

25-54 8 3 5 XI611818, Frags (XX1818). XXXX1818, X1818, Frags (X18) Mosaic
25-55 8 0 8 X[6]18181818, MNB (XX, 18, XX1818, -), XX1818, meta: XX1818, XX1818, 

XXX181818, XX1818, XX1818
Mosaic

26-56 5 0 5 MNB (XXX181818, XX18), MNB (X18, -), XX18181818, MNB (1818, -), 
1818

Abnormal

26-57 4 0 4 XYY18I61, XXXYYY181818, XY181818, X1818 Mosaic
26-58 6 1 5 X1818, meta: X1818. X1818, Frags (XXX18). Frags (X18) Aneuploid
26-59 5 3 2 MNB (Y18, -. 18). Frags (X[5118[5] Abnormal
26-60 5 1 4 Frags (XX181818), XXX18, MNB (XXX18181818.18), 

MNB (X18, X, XX18,1818, X1818, -)
Abnormal

27-61 8 7 1 MNB (XXY18181818, X{6]Y[7118(9] Abnormal
a . The first number indicates the number of the patient from which the embryo was obtained, and the number following the hyphen 

represents consecutive numbering of the embryos analyzed. 

b : W hen the Total #  of Cells is greater than the sum of the #  Anuclear and the #  Nucleated, one or more blastomeres were lost during analysis. 
c : Genetic complements of the individual blastomeres are separated by commas.
d : MNB indicates a multinucleated blastomere. The genetic complements of each individual nucleus is contained within the parenthesis 

separated by commas. 
e : Indicates nuclei in which there were no signals.

' :  Frags indicates a blastomere with a fragmented nucleus. The total number of signals observed is contained within the parenthesis.
a : The number in the brackets indicates the total number of signals for the preceding chromosome. i q

tn
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